{"title":"Importance of ocean prediction for heavy rainfall prediction over Japan in July 2020","authors":"Yuya Baba","doi":"10.1002/asl.1099","DOIUrl":null,"url":null,"abstract":"<p>Hindcast experiments were performed for heavy rainfall events over Japan in July 2020 using a regional atmospheric model and a regional coupled model to examine the importance of ocean prediction for predicting heavy rainfall events. Both models were able to predict the first peak of accumulated rainfall over western Japan occurring in the first half of July. However, only the coupled model predicted the second peak that occurred in the second half of July. Sea level pressure (SLP) and low-level moisture inflow originating from an existing atmospheric river (AR) were found to differ in each model. In the regional atmospheric model, the error associated with the inaccurate low-level moisture inflow grew with rising excessive latent heat flux, which enhanced convection and resulted in incorrect SLP patterns. This trend seems to be enhanced by having a prescribed sea surface temperature (SST), which affects the surface heat flux. When ocean conditions are predicted as in the coupled model, such error growth is suppressed by changes in SST that adjust surface heat flux, and it leads to generation of the correct SLP patterns. With correct SLP especially for Pacific high in this case, favorable conditions for inflow from the AR can also be predicted, thus making it possible to predict the heavy rainfall. In conclusion, considering the atmospheric feedback on SST, ocean prediction can improve the predictability of heavy rainfall over Japan, the conditions for which are influenced by the nearby AR. Ocean prediction may therefore extend the range of weather forecasting.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"23 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rmets.onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1099","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1099","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Hindcast experiments were performed for heavy rainfall events over Japan in July 2020 using a regional atmospheric model and a regional coupled model to examine the importance of ocean prediction for predicting heavy rainfall events. Both models were able to predict the first peak of accumulated rainfall over western Japan occurring in the first half of July. However, only the coupled model predicted the second peak that occurred in the second half of July. Sea level pressure (SLP) and low-level moisture inflow originating from an existing atmospheric river (AR) were found to differ in each model. In the regional atmospheric model, the error associated with the inaccurate low-level moisture inflow grew with rising excessive latent heat flux, which enhanced convection and resulted in incorrect SLP patterns. This trend seems to be enhanced by having a prescribed sea surface temperature (SST), which affects the surface heat flux. When ocean conditions are predicted as in the coupled model, such error growth is suppressed by changes in SST that adjust surface heat flux, and it leads to generation of the correct SLP patterns. With correct SLP especially for Pacific high in this case, favorable conditions for inflow from the AR can also be predicted, thus making it possible to predict the heavy rainfall. In conclusion, considering the atmospheric feedback on SST, ocean prediction can improve the predictability of heavy rainfall over Japan, the conditions for which are influenced by the nearby AR. Ocean prediction may therefore extend the range of weather forecasting.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.