{"title":"Upward flame spread over discrete thin solids separated by heat-absorbing inert materials","authors":"Wohan Cui, Ankit Sharma, Ya-Ting T. Liao","doi":"10.1177/07349041231153145","DOIUrl":null,"url":null,"abstract":"Flame spread over discrete solid fuels has been of key research interest in the past few decades. Most studies considered an array of discrete fuels separated by air gaps or heat-insulating inert materials. The effects of heat loss due to the discrete configuration are not well understood. The present study aims to bridge this knowledge gap. A series of experiments are performed using a vertical array of thin discrete fuels separated by heat-absorbing inert materials of different thicknesses. For comparisons, experiments are also performed using discrete fuels separated by air gaps and using continuous fuel. The flame base spread rate is found to be generally higher in discrete fuel than in continuous fuel configurations, due to a reduced fuel load per unit length. It is also found that the air and inert gaps have opposite effects on the solid burning rates. The air gaps break the no-slip boundary, allowing the laterally entrained buoyancy flow (normal to the sample surface) to push the flame closer to the samples. This leads to an enhanced heat flux on the sample surface and an increased solid burning rate. On the other hand, the inert materials retain the flow boundary profile and act as a heat sink during flame spread, thereby reducing the solid burning rate. As the inert thickness increases, flame spread rate and solid burning rate decrease. Based on these observations, an existing model for flame spread rate is updated by incorporating the heat-absorbing effects of the gaps. The correlation is validated using the experimental data.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041231153145","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Flame spread over discrete solid fuels has been of key research interest in the past few decades. Most studies considered an array of discrete fuels separated by air gaps or heat-insulating inert materials. The effects of heat loss due to the discrete configuration are not well understood. The present study aims to bridge this knowledge gap. A series of experiments are performed using a vertical array of thin discrete fuels separated by heat-absorbing inert materials of different thicknesses. For comparisons, experiments are also performed using discrete fuels separated by air gaps and using continuous fuel. The flame base spread rate is found to be generally higher in discrete fuel than in continuous fuel configurations, due to a reduced fuel load per unit length. It is also found that the air and inert gaps have opposite effects on the solid burning rates. The air gaps break the no-slip boundary, allowing the laterally entrained buoyancy flow (normal to the sample surface) to push the flame closer to the samples. This leads to an enhanced heat flux on the sample surface and an increased solid burning rate. On the other hand, the inert materials retain the flow boundary profile and act as a heat sink during flame spread, thereby reducing the solid burning rate. As the inert thickness increases, flame spread rate and solid burning rate decrease. Based on these observations, an existing model for flame spread rate is updated by incorporating the heat-absorbing effects of the gaps. The correlation is validated using the experimental data.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).