Some properties of portfolios constructed from principal components of asset returns

IF 0.8 Q4 BUSINESS, FINANCE
Thomas A. Severini
{"title":"Some properties of portfolios constructed from principal components of asset returns","authors":"Thomas A. Severini","doi":"10.1007/s10436-022-00412-z","DOIUrl":null,"url":null,"abstract":"<div><p>Principal components analysis (PCA) is a well-known statistical method used to analyze the covariance structure of a random vector and for dimension reduction. When applied to an <i>N</i>-dimensional random vector of asset returns, PCA produces a set of <i>N</i> principal components, linear functions of the asset return vector that are mutually uncorrelated and which have some important statistical properties. The purpose of this paper is to consider the properties of portfolios based on such principal components, know as PC portfolios, including the efficiency of PC portfolios, the use of PC portfolios to reduce the return variance of a given portfolio, and the properties of factor models with PC portfolios as factors.</p></div>","PeriodicalId":45289,"journal":{"name":"Annals of Finance","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Finance","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10436-022-00412-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Principal components analysis (PCA) is a well-known statistical method used to analyze the covariance structure of a random vector and for dimension reduction. When applied to an N-dimensional random vector of asset returns, PCA produces a set of N principal components, linear functions of the asset return vector that are mutually uncorrelated and which have some important statistical properties. The purpose of this paper is to consider the properties of portfolios based on such principal components, know as PC portfolios, including the efficiency of PC portfolios, the use of PC portfolios to reduce the return variance of a given portfolio, and the properties of factor models with PC portfolios as factors.

由资产回报的主要组成部分构建的投资组合的一些性质
主成分分析(PCA)是一种众所周知的统计方法,用于分析随机向量的协方差结构和降维。当应用于资产回报的N维随机向量时,主成分分析产生了一组N个主成分,即相互不相关的资产回报向量的线性函数,它们具有一些重要的统计特性。本文的目的是考虑基于这些主成分的投资组合的性质,即PC投资组合,包括PC投资组合的效率,使用PC投资组合来减少给定投资组合的回报方差,以及以PC投资组合为因子的因子模型的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Finance
Annals of Finance BUSINESS, FINANCE-
CiteScore
2.00
自引率
10.00%
发文量
15
期刊介绍: Annals of Finance provides an outlet for original research in all areas of finance and its applications to other disciplines having a clear and substantive link to the general theme of finance. In particular, innovative research papers of moderate length of the highest quality in all scientific areas that are motivated by the analysis of financial problems will be considered. Annals of Finance''s scope encompasses - but is not limited to - the following areas: accounting and finance, asset pricing, banking and finance, capital markets and finance, computational finance, corporate finance, derivatives, dynamical and chaotic systems in finance, economics and finance, empirical finance, experimental finance, finance and the theory of the firm, financial econometrics, financial institutions, mathematical finance, money and finance, portfolio analysis, regulation, stochastic analysis and finance, stock market analysis, systemic risk and financial stability. Annals of Finance also publishes special issues on any topic in finance and its applications of current interest. A small section, entitled finance notes, will be devoted solely to publishing short articles – up to ten pages in length, of substantial interest in finance. Officially cited as: Ann Finance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信