Ekena Rangel Pinagé, Michael Keller, Christopher P. Peck, Marcos Longo, Paul Duffy, Ovidiu Csillik
{"title":"Effects of forest degradation classification on the uncertainty of aboveground carbon estimates in the Amazon","authors":"Ekena Rangel Pinagé, Michael Keller, Christopher P. Peck, Marcos Longo, Paul Duffy, Ovidiu Csillik","doi":"10.1186/s13021-023-00221-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Tropical forests are critical for the global carbon budget, yet they have been threatened by deforestation and forest degradation by fire, selective logging, and fragmentation. Existing uncertainties on land cover classification and in biomass estimates hinder accurate attribution of carbon emissions to specific forest classes. In this study, we used textural metrics derived from PlanetScope images to implement a probabilistic classification framework to identify intact, logged and burned forests in three Amazonian sites. We also estimated biomass for these forest classes using airborne lidar and compared biomass uncertainties using the lidar-derived estimates only to biomass uncertainties considering the forest degradation classification as well.</p><h3>Results</h3><p>Our classification approach reached overall accuracy of 0.86, with accuracy at individual sites varying from 0.69 to 0.93. Logged forests showed variable biomass changes, while burned forests showed an average carbon loss of 35%. We found that including uncertainty in forest degradation classification significantly increased uncertainty and decreased estimates of mean carbon density in two of the three test sites.</p><h3>Conclusions</h3><p>Our findings indicate that the attribution of biomass changes to forest degradation classes needs to account for the uncertainty in forest degradation classification. By combining very high-resolution images with lidar data, we could attribute carbon stock changes to specific pathways of forest degradation. This approach also allows quantifying uncertainties of carbon emissions associated with forest degradation through logging and fire. Both the attribution and uncertainty quantification provide critical information for national greenhouse gas inventories.</p></div>","PeriodicalId":505,"journal":{"name":"Carbon Balance and Management","volume":"18 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://cbmjournal.biomedcentral.com/counter/pdf/10.1186/s13021-023-00221-5","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Balance and Management","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s13021-023-00221-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Background
Tropical forests are critical for the global carbon budget, yet they have been threatened by deforestation and forest degradation by fire, selective logging, and fragmentation. Existing uncertainties on land cover classification and in biomass estimates hinder accurate attribution of carbon emissions to specific forest classes. In this study, we used textural metrics derived from PlanetScope images to implement a probabilistic classification framework to identify intact, logged and burned forests in three Amazonian sites. We also estimated biomass for these forest classes using airborne lidar and compared biomass uncertainties using the lidar-derived estimates only to biomass uncertainties considering the forest degradation classification as well.
Results
Our classification approach reached overall accuracy of 0.86, with accuracy at individual sites varying from 0.69 to 0.93. Logged forests showed variable biomass changes, while burned forests showed an average carbon loss of 35%. We found that including uncertainty in forest degradation classification significantly increased uncertainty and decreased estimates of mean carbon density in two of the three test sites.
Conclusions
Our findings indicate that the attribution of biomass changes to forest degradation classes needs to account for the uncertainty in forest degradation classification. By combining very high-resolution images with lidar data, we could attribute carbon stock changes to specific pathways of forest degradation. This approach also allows quantifying uncertainties of carbon emissions associated with forest degradation through logging and fire. Both the attribution and uncertainty quantification provide critical information for national greenhouse gas inventories.
期刊介绍:
Carbon Balance and Management is an open access, peer-reviewed online journal that encompasses all aspects of research aimed at developing a comprehensive policy relevant to the understanding of the global carbon cycle.
The global carbon cycle involves important couplings between climate, atmospheric CO2 and the terrestrial and oceanic biospheres. The current transformation of the carbon cycle due to changes in climate and atmospheric composition is widely recognized as potentially dangerous for the biosphere and for the well-being of humankind, and therefore monitoring, understanding and predicting the evolution of the carbon cycle in the context of the whole biosphere (both terrestrial and marine) is a challenge to the scientific community.
This demands interdisciplinary research and new approaches for studying geographical and temporal distributions of carbon pools and fluxes, control and feedback mechanisms of the carbon-climate system, points of intervention and windows of opportunity for managing the carbon-climate-human system.
Carbon Balance and Management is a medium for researchers in the field to convey the results of their research across disciplinary boundaries. Through this dissemination of research, the journal aims to support the work of the Intergovernmental Panel for Climate Change (IPCC) and to provide governmental and non-governmental organizations with instantaneous access to continually emerging knowledge, including paradigm shifts and consensual views.