{"title":"Generalized intransitive dice II: Partition constructions","authors":"E. Akin, Julia Saccamano","doi":"10.3934/JDG.2021005","DOIUrl":null,"url":null,"abstract":"A generalized $N$-sided die is a random variable $D$ on a sample space of $N$ equally likely outcomes taking values in the set of positive integers. We say of independent $N$ sided dice $D_i, D_j$ that $D_i$ beats $D_j$, written $D_i \\to D_j$, if $Prob(D_i > D_j) > \\frac{1}{2} $. A collection of dice $\\{ D_i : i = 1, \\dots, n \\}$ models a tournament on the set $[n] = \\{ 1, 2, \\dots, n \\}$, i.e. a complete digraph with $n$ vertices, when $D_i \\to D_j$ if and only if $i \\to j$ in the tournament. By using $n$-fold partitions of the set $[Nn] $ with each set of size $N$ we can model an arbitrary tournament on $[n]$. A bound on the required size of $N$ is obtained by examples with $N = 3^{n-2}$.","PeriodicalId":42722,"journal":{"name":"Journal of Dynamics and Games","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/JDG.2021005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5
Abstract
A generalized $N$-sided die is a random variable $D$ on a sample space of $N$ equally likely outcomes taking values in the set of positive integers. We say of independent $N$ sided dice $D_i, D_j$ that $D_i$ beats $D_j$, written $D_i \to D_j$, if $Prob(D_i > D_j) > \frac{1}{2} $. A collection of dice $\{ D_i : i = 1, \dots, n \}$ models a tournament on the set $[n] = \{ 1, 2, \dots, n \}$, i.e. a complete digraph with $n$ vertices, when $D_i \to D_j$ if and only if $i \to j$ in the tournament. By using $n$-fold partitions of the set $[Nn] $ with each set of size $N$ we can model an arbitrary tournament on $[n]$. A bound on the required size of $N$ is obtained by examples with $N = 3^{n-2}$.
期刊介绍:
The Journal of Dynamics and Games (JDG) is a pure and applied mathematical journal that publishes high quality peer-review and expository papers in all research areas of expertise of its editors. The main focus of JDG is in the interface of Dynamical Systems and Game Theory.