Brain connectivity dynamics during listening to music and potential impact on task performance.

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2024-06-01 Epub Date: 2023-02-28 DOI:10.1007/s11571-023-09948-w
Geethanjali Balasubramanian, Adalarasu Kanagasabai, Mahesh Veezhinathan, Jagannath Mohan
{"title":"Brain connectivity dynamics during listening to music and potential impact on task performance.","authors":"Geethanjali Balasubramanian, Adalarasu Kanagasabai, Mahesh Veezhinathan, Jagannath Mohan","doi":"10.1007/s11571-023-09948-w","DOIUrl":null,"url":null,"abstract":"<p><p>To analyze brain connectivity dynamics during listening to music and estimate the potential impact on task performance. Fifteen participants (13 males and 2 females) participated in this study based on their interest in Indian classical music. Measurements of the influence of Indian music on task performance were obtained by assessing brain activation using EEG signals. Brain connectivity analysis was performed to visualize the connections between brain regions under various experimental conditions. Visual Go/No Go Stimuli was used to evaluate visual spatial attention during operation by evaluating misses, committed errors, and reaction times. In Task 1 (listening to music only), it was reported that there was a change in the positions of the electrodes (F3, F7) located in the left frontal lobe. The energy of the relative beta component was significantly higher only at F7 during task 1 (<i>p</i> = 0.005). Event-related desynchronization alpha and theta synchronization were significant (<i>p</i> = 0.005) at all electrode sites in the bilateral frontal lobes (F3, F4, F7 and F8) while listening to music and performing tasks (task 2). When the task without music (task 3) was performed, the energy of the relative alpha component was significantly higher at the Fp2 electrode position (<i>p</i> = 0.005). It is noteworthy that the energy of the theta component was significantly lower at the location of the Fp2 electrode (<i>p</i> = 0.005). The frontal asymmetry index score measures were significantly high at F4/F3 and F8/F7 during task 1. The connectivity map of theta synchronization showed a robust association between Fp2 and F8 which was in turn connected to P4 and O2 during Task 2. Results indicated an increased omission and commission errors during Task 3.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143124/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-09948-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

To analyze brain connectivity dynamics during listening to music and estimate the potential impact on task performance. Fifteen participants (13 males and 2 females) participated in this study based on their interest in Indian classical music. Measurements of the influence of Indian music on task performance were obtained by assessing brain activation using EEG signals. Brain connectivity analysis was performed to visualize the connections between brain regions under various experimental conditions. Visual Go/No Go Stimuli was used to evaluate visual spatial attention during operation by evaluating misses, committed errors, and reaction times. In Task 1 (listening to music only), it was reported that there was a change in the positions of the electrodes (F3, F7) located in the left frontal lobe. The energy of the relative beta component was significantly higher only at F7 during task 1 (p = 0.005). Event-related desynchronization alpha and theta synchronization were significant (p = 0.005) at all electrode sites in the bilateral frontal lobes (F3, F4, F7 and F8) while listening to music and performing tasks (task 2). When the task without music (task 3) was performed, the energy of the relative alpha component was significantly higher at the Fp2 electrode position (p = 0.005). It is noteworthy that the energy of the theta component was significantly lower at the location of the Fp2 electrode (p = 0.005). The frontal asymmetry index score measures were significantly high at F4/F3 and F8/F7 during task 1. The connectivity map of theta synchronization showed a robust association between Fp2 and F8 which was in turn connected to P4 and O2 during Task 2. Results indicated an increased omission and commission errors during Task 3.

听音乐时的大脑连接动态及其对任务表现的潜在影响
分析聆听音乐时的大脑连接动态,并估计其对任务表现的潜在影响。15名参与者(13名男性和2名女性)因对印度古典音乐感兴趣而参与了本研究。通过使用脑电图信号评估大脑激活情况,测量印度音乐对任务执行的影响。通过脑连接分析,可以直观地看到不同实验条件下大脑区域之间的连接。视觉围棋/不围棋刺激用于评估操作过程中的视觉空间注意力,方法是评估失误、犯错和反应时间。据报告,在任务 1(只听音乐)中,位于左额叶的电极(F3、F7)位置发生了变化。在任务 1 中,只有 F7 位置的相对贝塔成分能量明显更高(p = 0.005)。在听音乐和执行任务(任务 2)时,双侧额叶所有电极位置(F3、F4、F7 和 F8)的事件相关非同步化 alpha 和 theta 同步化都很明显(p = 0.005)。在没有音乐的情况下执行任务(任务 3)时,Fp2 电极位置的相对阿尔法成分的能量明显更高(p = 0.005)。值得注意的是,在 Fp2 电极位置,θ 成分的能量明显较低(p = 0.005)。在任务 1 中,F4/F3 和 F8/F7 处的额叶不对称指数得分明显较高。θ同步连接图显示,在任务 2 中,Fp2 和 F8 之间有很强的关联,而 F8 又与 P4 和 O2 相连。结果表明,在任务 3 中,遗漏和委托错误有所增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信