{"title":"AGRI-SLAM: a real-time stereo visual SLAM for agricultural environment","authors":"Rafiqul Islam, Habibullah Habibullah, Tagor Hossain","doi":"10.1007/s10514-023-10110-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, we proposed a stereo visual simultaneous localisation and mapping (SLAM) system that efficiently works in agricultural scenarios without compromising the performance and accuracy in contrast to the other state-of-the-art methods. The proposed system is equipped with an image enhancement technique for the ORB point and LSD line features recovery, which enables it to work in broader scenarios and gives extensive spatial information from the low-light and hazy agricultural environment. Firstly, the method has been tested on the standard dataset, i.e., KITTI and EuRoC, to validate the localisation accuracy by comparing it with the other state-of-the-art methods, namely VINS-SLAM, PL-SLAM, and ORB-SLAM2. The experimental results evidence that the proposed method obtains superior localisation and mapping accuracy than the other visual SLAM methods. Secondly, the proposed method is tested on the ROSARIO dataset, our low-light agricultural dataset, and O-HAZE dataset to validate the performance in agricultural environments. In such cases, while other methods fail to operate in such complex agricultural environments, our method successfully operates with high localisation and mapping accuracy.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 6","pages":"649 - 668"},"PeriodicalIF":3.7000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-023-10110-y.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10110-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
In this research, we proposed a stereo visual simultaneous localisation and mapping (SLAM) system that efficiently works in agricultural scenarios without compromising the performance and accuracy in contrast to the other state-of-the-art methods. The proposed system is equipped with an image enhancement technique for the ORB point and LSD line features recovery, which enables it to work in broader scenarios and gives extensive spatial information from the low-light and hazy agricultural environment. Firstly, the method has been tested on the standard dataset, i.e., KITTI and EuRoC, to validate the localisation accuracy by comparing it with the other state-of-the-art methods, namely VINS-SLAM, PL-SLAM, and ORB-SLAM2. The experimental results evidence that the proposed method obtains superior localisation and mapping accuracy than the other visual SLAM methods. Secondly, the proposed method is tested on the ROSARIO dataset, our low-light agricultural dataset, and O-HAZE dataset to validate the performance in agricultural environments. In such cases, while other methods fail to operate in such complex agricultural environments, our method successfully operates with high localisation and mapping accuracy.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.