Modelization of galactic cosmic-ray short-term variations for LISA

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Mattia Villani, Federico Sabbatini, Catia Grimani, Michele Fabi, Andrea Cesarini
{"title":"Modelization of galactic cosmic-ray short-term variations for LISA","authors":"Mattia Villani,&nbsp;Federico Sabbatini,&nbsp;Catia Grimani,&nbsp;Michele Fabi,&nbsp;Andrea Cesarini","doi":"10.1007/s10686-022-09884-3","DOIUrl":null,"url":null,"abstract":"<div><p>The European Space Agency Laser Interferometer Space Antenna (LISA) will be the first mission dedicated to the detection of low-frequency gravitational waves in space. Particles of galactic and solar origin above tens of MeV will penetrate the spacecraft and charge the metal free-falling test masses (TMs) playing the role of mirrors of the interferometer. The poissonian fluctuations of the charging process and associated spurious Coulomb forces acting on the TMs limit the sensitivity of LISA mainly below 1 mHz. Moreover, galactic cosmic-ray (GCR) flux short-term variations will modulate differently the TM charging on the three satellites of the LISA constellation. Without a proper GCR flux monitoring, the LISA TM charging estimates will be carried out on the basis of the long-term solar modulation only. In this work we report about models of galactic cosmic-ray short-term variations to investigate to which extent the galactic cosmic-ray depressions can be also used as a proxy of the increase of interplanetary magnetic field and solar wind speed observed at the passage of high-speed solar wind streams and interplanetary coronal mass ejections. Our final aim is to study the optimum characteristics of particle detectors for both TM charging estimate and interplanetary medium monitoring for LISA.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"1 - 30"},"PeriodicalIF":2.7000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-022-09884-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

The European Space Agency Laser Interferometer Space Antenna (LISA) will be the first mission dedicated to the detection of low-frequency gravitational waves in space. Particles of galactic and solar origin above tens of MeV will penetrate the spacecraft and charge the metal free-falling test masses (TMs) playing the role of mirrors of the interferometer. The poissonian fluctuations of the charging process and associated spurious Coulomb forces acting on the TMs limit the sensitivity of LISA mainly below 1 mHz. Moreover, galactic cosmic-ray (GCR) flux short-term variations will modulate differently the TM charging on the three satellites of the LISA constellation. Without a proper GCR flux monitoring, the LISA TM charging estimates will be carried out on the basis of the long-term solar modulation only. In this work we report about models of galactic cosmic-ray short-term variations to investigate to which extent the galactic cosmic-ray depressions can be also used as a proxy of the increase of interplanetary magnetic field and solar wind speed observed at the passage of high-speed solar wind streams and interplanetary coronal mass ejections. Our final aim is to study the optimum characteristics of particle detectors for both TM charging estimate and interplanetary medium monitoring for LISA.

Abstract Image

LISA星系宇宙射线短期变化模型化
欧洲空间局激光干涉仪空间天线(LISA)将是第一个致力于探测空间低频引力波的任务。来自银河系和太阳的几十MeV以上的粒子将穿透航天器,并对金属自由落体测试质量(TMs)进行充电,起到干涉仪镜面的作用。电荷过程的泊松波动和作用在TMs上的伪库仑力使LISA的灵敏度主要限制在1 mHz以下。此外,银河宇宙射线(GCR)通量的短期变化会对LISA星座三颗卫星上的TM电荷产生不同的调制。如果没有适当的GCR通量监测,LISA TM充电估计将仅根据长期的太阳能调制进行。在这项工作中,我们报告了星系宇宙射线短期变化的模型,以研究在多大程度上,星系宇宙射线的萧条也可以作为行星际磁场和太阳风速度增加的代理,在高速太阳风流和行星际日冕物质抛射中观测到。我们的最终目标是研究粒子探测器的最佳特性,用于TM电荷估计和LISA的行星际介质监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Astronomy
Experimental Astronomy 地学天文-天文与天体物理
CiteScore
5.30
自引率
3.30%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments. Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields. Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信