{"title":"Effect of self-recirculating casing treatment on the unsteady flow and stability of counter-rotating axial-flow compressor","authors":"Yanchao Guo, Limin Gao, X. Mao","doi":"10.1515/tjj-2022-0016","DOIUrl":null,"url":null,"abstract":"Abstract Counter-rotating axial-flow compressor (CRAC) is a promising technology to enhance the thrust-to-weight ratio of aero-engines. Self-recirculating casing treatment (SRCT) is an efficient flow control technique for increasing stall margin in conventional compressors. With the purpose of investigating the applicability and mechanism of SRCT in the CRACs, a two-stage CRAC is selected to investigate the stability enhancement mechanism of SRCT and its effect on the unsteady flow near the rotor tip, and the effect of injector location on the stability improvement capacity of SRCT is also studied. Results show that about 7.73% stall margin improvement can be achieved by configuring the SRCT on the near rotor top, and the injector location also has a significant influence on the stability expansion potential of SRCT. The SRCT delays the stall occurrence by weakening the intensity of tip leakage flow (TLF) and restraining the leading-edge spillages of TLF. The SRCT reduces the unsteady interference between the adjacent rotors by receding the disturbance of the upstream wake and inhibiting the potential flow effect of the downstream. Furthermore, the SRCT reduces the self-excited oscillation frequency of TLF and damps its fluctuation amplitude.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2022-0016","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Counter-rotating axial-flow compressor (CRAC) is a promising technology to enhance the thrust-to-weight ratio of aero-engines. Self-recirculating casing treatment (SRCT) is an efficient flow control technique for increasing stall margin in conventional compressors. With the purpose of investigating the applicability and mechanism of SRCT in the CRACs, a two-stage CRAC is selected to investigate the stability enhancement mechanism of SRCT and its effect on the unsteady flow near the rotor tip, and the effect of injector location on the stability improvement capacity of SRCT is also studied. Results show that about 7.73% stall margin improvement can be achieved by configuring the SRCT on the near rotor top, and the injector location also has a significant influence on the stability expansion potential of SRCT. The SRCT delays the stall occurrence by weakening the intensity of tip leakage flow (TLF) and restraining the leading-edge spillages of TLF. The SRCT reduces the unsteady interference between the adjacent rotors by receding the disturbance of the upstream wake and inhibiting the potential flow effect of the downstream. Furthermore, the SRCT reduces the self-excited oscillation frequency of TLF and damps its fluctuation amplitude.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.