Bruno Nunes, Inês Pinho, Jorge Cruz Fernandes, Rui M. Almeida, Luis F. Santos
{"title":"Mechanical properties of ion-exchanged alkali aluminosilicate glass","authors":"Bruno Nunes, Inês Pinho, Jorge Cruz Fernandes, Rui M. Almeida, Luis F. Santos","doi":"10.1111/ijag.16595","DOIUrl":null,"url":null,"abstract":"<p>Aluminosilicate glasses present good optical and mechanical properties, but their mechanical behavior can be further improved by thermal or chemical treatments, making them suitable for applications requiring high hardness and fracture strength, for example, laptop monitors or mobile phone screens. A lithium aluminosilicate composition was prepared, and ion exchanged in a KNO<sub>3</sub> bath at different temperatures for various times. Density and UV–vis transmission were measured before and after ion exchange of the glass, together with the mechanical properties, namely, Young's modulus, Poisson's ratio, shear modulus, Vickers hardness, indentation fracture toughness, and equi-biaxial bending strength, whose results were treated by Weibull statistics. The initial glass composition presented a Vickers hardness of 620 ± 10 HV, a Young's modulus of 87 ± 1 GPa, and a fracture toughness of 1.7 ± .1 MPa.m<sup>1/2</sup>. After ion exchange, the Vickers hardness of the glass increased to average values of 716 HV for 12 h at 450°C and 728 HV for 30 h at 420°C, while the fracture toughness increased to 2.2 ± .1 MPa.m<sup>1/2</sup>, confirming the improvement of the mechanical properties. These results have been compared with two commercial glasses: a monitor glass from a laptop computer and a glass normally used in mobile phone screens.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"14 1","pages":"155-164"},"PeriodicalIF":2.1000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16595","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Aluminosilicate glasses present good optical and mechanical properties, but their mechanical behavior can be further improved by thermal or chemical treatments, making them suitable for applications requiring high hardness and fracture strength, for example, laptop monitors or mobile phone screens. A lithium aluminosilicate composition was prepared, and ion exchanged in a KNO3 bath at different temperatures for various times. Density and UV–vis transmission were measured before and after ion exchange of the glass, together with the mechanical properties, namely, Young's modulus, Poisson's ratio, shear modulus, Vickers hardness, indentation fracture toughness, and equi-biaxial bending strength, whose results were treated by Weibull statistics. The initial glass composition presented a Vickers hardness of 620 ± 10 HV, a Young's modulus of 87 ± 1 GPa, and a fracture toughness of 1.7 ± .1 MPa.m1/2. After ion exchange, the Vickers hardness of the glass increased to average values of 716 HV for 12 h at 450°C and 728 HV for 30 h at 420°C, while the fracture toughness increased to 2.2 ± .1 MPa.m1/2, confirming the improvement of the mechanical properties. These results have been compared with two commercial glasses: a monitor glass from a laptop computer and a glass normally used in mobile phone screens.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.