B. Kandola, Trishan A. M. Hewage, Muhammed Hajee, A. Horrocks
{"title":"Effect of Cross-Linkers on the Processing of Lignin/Polyamide Precursors for Carbon Fibres","authors":"B. Kandola, Trishan A. M. Hewage, Muhammed Hajee, A. Horrocks","doi":"10.3390/fib11020016","DOIUrl":null,"url":null,"abstract":"This work reports the use of cross-linkers in bio-based blends from hydroxypropyl-modified lignin (TcC) and a bio-based polyamide (PA1010) for possible use as carbon fibre precursors, which, while minimising their effects on melt processing into filaments, assist in cross-linking components during the subsequent thermal stabilisation stage. Cross-linkers included a highly sterically hindered aliphatic hydrocarbon (Perkadox 30, PdX), a mono-functional organic peroxide (Triganox 311, TnX), and two different hydroxyalkylamides (Primid® XL-552 (PmD 552) and Primid® QM-1260 (PmD 1260)). The characterisation of melt-compounded samples of TcC/PA1010 containing PdX and TnX indicated considerable cross-linking via FTIR, DSC, DMA and rheology measurements. While both Primids showed some evidence of cross-linking, it was less than with PdX and TnX. This was corroborated via melt spinning of the melt-compounded chips or pellet-coated TcC/PA1010, each with cross-linker via a continuous, sub-pilot scale, melt-spinning process, where both Primids showed better processability. With the latter technique, while filaments could be produced, they were very brittle. To overcome this, melt-spun TcC/PA1010 filaments were immersed in aqueous solutions of PmD 552 and PmD 1260 at 80 °C. The resultant filaments could be easily thermally stabilised and showed evidence of cross-linking, producing higher char residues than the control filaments in the TGA experiments.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work reports the use of cross-linkers in bio-based blends from hydroxypropyl-modified lignin (TcC) and a bio-based polyamide (PA1010) for possible use as carbon fibre precursors, which, while minimising their effects on melt processing into filaments, assist in cross-linking components during the subsequent thermal stabilisation stage. Cross-linkers included a highly sterically hindered aliphatic hydrocarbon (Perkadox 30, PdX), a mono-functional organic peroxide (Triganox 311, TnX), and two different hydroxyalkylamides (Primid® XL-552 (PmD 552) and Primid® QM-1260 (PmD 1260)). The characterisation of melt-compounded samples of TcC/PA1010 containing PdX and TnX indicated considerable cross-linking via FTIR, DSC, DMA and rheology measurements. While both Primids showed some evidence of cross-linking, it was less than with PdX and TnX. This was corroborated via melt spinning of the melt-compounded chips or pellet-coated TcC/PA1010, each with cross-linker via a continuous, sub-pilot scale, melt-spinning process, where both Primids showed better processability. With the latter technique, while filaments could be produced, they were very brittle. To overcome this, melt-spun TcC/PA1010 filaments were immersed in aqueous solutions of PmD 552 and PmD 1260 at 80 °C. The resultant filaments could be easily thermally stabilised and showed evidence of cross-linking, producing higher char residues than the control filaments in the TGA experiments.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins