{"title":"A case study of T-beams with hybrid section shear characteristics of reactive powder concrete","authors":"R. Atea, Rasha A. Aljazaari, Hasanain M. Dheyab","doi":"10.1515/eng-2022-0424","DOIUrl":null,"url":null,"abstract":"Abstract As an extension of recent developments in concrete understanding, an extensive study is currently being conducted on the structural performance of reactive powder concrete (RPC). This article guides how to investigate the shear behavior of RPC T-beams and calculate their ultimate and breaking shear capacities. The mechanical features of this construction material and approach to revising the reactive powder shear hybrid segment T-beams are cast-off in this motion and are investigated in this experimental study. To evaluate the effects of volumetric ratio of steel fibers, silica fume ratio, and tensile steel ratio, introductory section on the effectiveness of T-beam shearing reactive powder, the program of experimentation involved trying four beams. The research aimed to determine the deflection conduct of the load, downtime approach, strain amount over the beams’ depth, and failure form of cracks. In examining reaction powder’s mechanical characteristics mixtures, steel fiber volumetric ratio and silica fume volumetric ratio were also studied. Furthermore, a hybrid beam study revealed that by using reactive powder web and regular concrete in flange effectively, T-beam concert is enhanced when associated with normal concrete T-beams by 12%. Hybrid beams have also revealed that using reactive powder flange and usual concrete in a web effectively advances the show of T-beams when associated with standard concrete T-beams by 28%.","PeriodicalId":19512,"journal":{"name":"Open Engineering","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eng-2022-0424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract As an extension of recent developments in concrete understanding, an extensive study is currently being conducted on the structural performance of reactive powder concrete (RPC). This article guides how to investigate the shear behavior of RPC T-beams and calculate their ultimate and breaking shear capacities. The mechanical features of this construction material and approach to revising the reactive powder shear hybrid segment T-beams are cast-off in this motion and are investigated in this experimental study. To evaluate the effects of volumetric ratio of steel fibers, silica fume ratio, and tensile steel ratio, introductory section on the effectiveness of T-beam shearing reactive powder, the program of experimentation involved trying four beams. The research aimed to determine the deflection conduct of the load, downtime approach, strain amount over the beams’ depth, and failure form of cracks. In examining reaction powder’s mechanical characteristics mixtures, steel fiber volumetric ratio and silica fume volumetric ratio were also studied. Furthermore, a hybrid beam study revealed that by using reactive powder web and regular concrete in flange effectively, T-beam concert is enhanced when associated with normal concrete T-beams by 12%. Hybrid beams have also revealed that using reactive powder flange and usual concrete in a web effectively advances the show of T-beams when associated with standard concrete T-beams by 28%.
期刊介绍:
Open Engineering publishes research results of wide interest in emerging interdisciplinary and traditional engineering fields, including: electrical and computer engineering, civil and environmental engineering, mechanical and aerospace engineering, material science and engineering. The journal is designed to facilitate the exchange of innovative and interdisciplinary ideas between researchers from different countries. Open Engineering is a peer-reviewed, English language journal. Researchers from non-English speaking regions are provided with free language correction by scientists who are native speakers. Additionally, each published article is widely promoted to researchers working in the same field.