Cluster Self-Organization of Intermetallic Systems: K3, K4, K5, K6, and K13 Clusters-Precursors for the Self-Assembly of U8Ni10Al36-mC54, U20Ni26-mC46, and U8Co8-cI16 Crystal Structures
{"title":"Cluster Self-Organization of Intermetallic Systems: K3, K4, K5, K6, and K13 Clusters-Precursors for the Self-Assembly of U8Ni10Al36-mC54, U20Ni26-mC46, and U8Co8-cI16 Crystal Structures","authors":"V. Ya. Shevchenko, G. D. Ilyushin","doi":"10.1134/S1087659623600321","DOIUrl":null,"url":null,"abstract":"<p>Using computer methods (the ToposPro software package), a combinatorial topological analysis and modeling of the self-assembly of U<sub>8</sub>Ni<sub>10</sub>Al<sub>36</sub>-<i>mC</i>54 (<i>a</i> = 15.5470 Å, <i>b</i> = 4.0610 Å, <i>c</i> = 16.4580 Å, β = 120.00°, <i>V</i> = 899.89 Å<sup>3</sup>, <i>C m</i>), U<sub>20</sub>Ni<sub>26</sub>-<i>mC</i>46 (<i>a</i> = 7.660 Å, <i>b</i> = 13.080 Å, <i>c</i> = 7.649 Å, β = 108.88°, <i>V</i> = 725.26 Å<sup>3</sup>, <i>C</i>2/<i>m</i>), and U<sub>8</sub>Co<sub>8</sub>-<i>cI</i>16 (<i>a</i> = 6.343 Å, <i>V</i> = 255.20 Å<sup>3</sup>, <i>I</i> 2<sub>1</sub>3) are carried out. For the U<sub>8</sub>Ni<sub>10</sub>Al<sub>36</sub>-<i>mC</i>54 crystal structure, 960 variants of the cluster representation of the 3D atomic grid with the number of structural units 5, 6, and 7 are established. Six crystallographically independent structural units in the form of a pyramid <i>K</i>5 = 0@Al(U<sub>2</sub>Al<sub>2</sub>), pyramid <i>K</i>6A = 0@U(NiAl<sub>4</sub>), and pyramid <i>K</i>6B = 0@U(NiAl<sub>4</sub>), as well as rings <i>K</i>3A = 0@NiAl<sub>2</sub>, <i>K</i>3B = 0@NiAl<sub>2</sub>, and <i>K</i>3C = 0@Al<sub>3</sub>, are determined. For the U<sub>20</sub>Ni<sub>26</sub>-<i>mC</i>46 crystal structure, the structural units <i>K</i>5 = Ni(Ni<sub>2</sub>U<sub>2</sub>) and icosahedra <i>K</i>13<i>=</i> Ni@Ni<sub>6</sub>U<sub>6</sub> are defined. For the crystal structure U<sub>2</sub>Co<sub>2</sub>-<i>cI</i>16, the structural units—tetrahedra <i>K</i>4 = U<sub>2</sub>Co<sub>2</sub>—are defined. The symmetry and topological code of the processes of self-assembly of 3D structures from clusters-precursors are reconstructed in the following form: primary chain → layer → framework.</p>","PeriodicalId":580,"journal":{"name":"Glass Physics and Chemistry","volume":"49 4","pages":"327 - 335"},"PeriodicalIF":0.8000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Physics and Chemistry","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1087659623600321","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using computer methods (the ToposPro software package), a combinatorial topological analysis and modeling of the self-assembly of U8Ni10Al36-mC54 (a = 15.5470 Å, b = 4.0610 Å, c = 16.4580 Å, β = 120.00°, V = 899.89 Å3, C m), U20Ni26-mC46 (a = 7.660 Å, b = 13.080 Å, c = 7.649 Å, β = 108.88°, V = 725.26 Å3, C2/m), and U8Co8-cI16 (a = 6.343 Å, V = 255.20 Å3, I 213) are carried out. For the U8Ni10Al36-mC54 crystal structure, 960 variants of the cluster representation of the 3D atomic grid with the number of structural units 5, 6, and 7 are established. Six crystallographically independent structural units in the form of a pyramid K5 = 0@Al(U2Al2), pyramid K6A = 0@U(NiAl4), and pyramid K6B = 0@U(NiAl4), as well as rings K3A = 0@NiAl2, K3B = 0@NiAl2, and K3C = 0@Al3, are determined. For the U20Ni26-mC46 crystal structure, the structural units K5 = Ni(Ni2U2) and icosahedra K13= Ni@Ni6U6 are defined. For the crystal structure U2Co2-cI16, the structural units—tetrahedra K4 = U2Co2—are defined. The symmetry and topological code of the processes of self-assembly of 3D structures from clusters-precursors are reconstructed in the following form: primary chain → layer → framework.
使用电脑的方法(ToposPro软件包),一个自组装的组合拓扑分析和建模U8Ni10Al36-mC54 (a = 15.5470 a, b = 4.0610 a, c = 16.4580,β= 120.00°,V = 899.89 A3, c m), U20Ni26-mC46 (a = 7.660 a, b = 13.080 a, c = 7.649,β= 108.88°,V = 725.26 A3, C2 / m),和U8Co8-cI16 (= 6.343 V = 255.20 A3,我213)进行。对于U8Ni10Al36-mC54晶体结构,建立了960种结构单元为5、6、7的三维原子网格簇表示形式。确定了6个晶体独立的结构单元,分别为金字塔K5 = 0@Al(U2Al2)、金字塔K6A = 0@U(NiAl4)和金字塔K6B = 0@U(NiAl4),以及环K3A = 0@NiAl2、K3B = 0@NiAl2和K3C = 0@Al3。对于U20Ni26-mC46晶体结构,定义了结构单元K5 = Ni(Ni2U2)和二十面体K13= Ni@Ni6U6。对于晶体结构U2Co2-cI16,定义了结构单元——四面体K4 = u2co2。对簇-前驱体三维结构自组装过程的对称性和拓扑编码进行了重构:主链→层→框架。
期刊介绍:
Glass Physics and Chemistry presents results of research on the inorganic and physical chemistry of glass, ceramics, nanoparticles, nanocomposites, and high-temperature oxides and coatings. The journal welcomes manuscripts from all countries in the English or Russian language.