Different Ectopic Hoxa2 Expression Levels in Mouse Cranial Neural Crest Cells Result in Distinct Craniofacial Anomalies and Homeotic Phenotypes

IF 2.2 Q3 DEVELOPMENTAL BIOLOGY
Taro Kitazawa, Maryline Minoux, S. Ducret, F. Rijli
{"title":"Different Ectopic Hoxa2 Expression Levels in Mouse Cranial Neural Crest Cells Result in Distinct Craniofacial Anomalies and Homeotic Phenotypes","authors":"Taro Kitazawa, Maryline Minoux, S. Ducret, F. Rijli","doi":"10.3390/jdb10010009","DOIUrl":null,"url":null,"abstract":"Providing appropriate positional identity and patterning information to distinct rostrocaudal subpopulations of cranial neural crest cells (CNCCs) is central to vertebrate craniofacial morphogenesis. Hox genes are not expressed in frontonasal and first pharyngeal arch (PA1) CNCCs, whereas a single Hox gene, Hoxa2, is necessary to provide patterning information to second pharyngeal arch (PA2) CNCCs. In frog, chick and mouse embryos, ectopic expression of Hoxa2 in Hox-negative CNCCs induced hypoplastic phenotypes of CNCC derivatives of variable severity, associated or not with homeotic transformation of a subset of PA1 structures into a PA2-like identity. Whether these different morphological outcomes are directly related to distinct Hoxa2 overexpression levels is unknown. To address this issue, we selectively induced Hoxa2 overexpression in mouse CNCCs, using a panel of mouse lines expressing different Hoxa2 ectopic expression levels, including a newly generated Hoxa2 knocked-in mouse line. While ectopic Hoxa2 expression at only 60% of its physiological levels was sufficient for pinna duplication, ectopic Hoxa2 expression at 100% of its normal level was required for complete homeotic repatterning of a subset of PA1 skeletal elements into a duplicated set of PA2-like elements. On the other hand, ectopic Hoxa2 overexpression at non-physiological levels (200% of normal levels) led to an almost complete loss of craniofacial skeletal structures. Moreover, ectopic Hoxa5 overexpression in CNCCs, while also resulting in severe craniofacial defects, did not induce homeotic changes of PA1-derived CNCCs, indicating Hoxa2 specificity in repatterning a subset of Hox-negative CNCCs. These results reconcile some discrepancies in previously published experiments and indicate that distinct subpopulations of CNCCs are differentially sensitive to ectopic levels of Hox expression.","PeriodicalId":15563,"journal":{"name":"Journal of Developmental Biology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jdb10010009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

Providing appropriate positional identity and patterning information to distinct rostrocaudal subpopulations of cranial neural crest cells (CNCCs) is central to vertebrate craniofacial morphogenesis. Hox genes are not expressed in frontonasal and first pharyngeal arch (PA1) CNCCs, whereas a single Hox gene, Hoxa2, is necessary to provide patterning information to second pharyngeal arch (PA2) CNCCs. In frog, chick and mouse embryos, ectopic expression of Hoxa2 in Hox-negative CNCCs induced hypoplastic phenotypes of CNCC derivatives of variable severity, associated or not with homeotic transformation of a subset of PA1 structures into a PA2-like identity. Whether these different morphological outcomes are directly related to distinct Hoxa2 overexpression levels is unknown. To address this issue, we selectively induced Hoxa2 overexpression in mouse CNCCs, using a panel of mouse lines expressing different Hoxa2 ectopic expression levels, including a newly generated Hoxa2 knocked-in mouse line. While ectopic Hoxa2 expression at only 60% of its physiological levels was sufficient for pinna duplication, ectopic Hoxa2 expression at 100% of its normal level was required for complete homeotic repatterning of a subset of PA1 skeletal elements into a duplicated set of PA2-like elements. On the other hand, ectopic Hoxa2 overexpression at non-physiological levels (200% of normal levels) led to an almost complete loss of craniofacial skeletal structures. Moreover, ectopic Hoxa5 overexpression in CNCCs, while also resulting in severe craniofacial defects, did not induce homeotic changes of PA1-derived CNCCs, indicating Hoxa2 specificity in repatterning a subset of Hox-negative CNCCs. These results reconcile some discrepancies in previously published experiments and indicate that distinct subpopulations of CNCCs are differentially sensitive to ectopic levels of Hox expression.
小鼠颅神经嵴细胞中不同的异位Hoxa2表达水平导致不同的颅面异常和同源表型
为不同的颅神经嵴细胞(cncc)提供适当的位置识别和模式信息对脊椎动物颅面形态发生至关重要。Hox基因在额鼻和第一咽弓(PA1) cncc中不表达,而单个Hox基因Hoxa2为第二咽弓(PA2) cncc提供了必要的模式信息。在青蛙、鸡和小鼠胚胎中,Hoxa2在hox阴性CNCC中的异位表达诱导了不同严重程度的CNCC衍生物的发育不良表型,这与PA1结构子集向pa2样身份的同质转化有关或不相关。这些不同的形态学结果是否与不同的Hoxa2过表达水平直接相关尚不清楚。为了解决这个问题,我们使用一组表达不同Hoxa2异位表达水平的小鼠系,包括新生成的Hoxa2敲入小鼠系,选择性地诱导Hoxa2在小鼠cncc中过表达。虽然异位Hoxa2表达仅为其生理水平的60%就足以实现耳廓复制,但要将PA1骨骼元件子集完全同源重组为一组重复的pa2样元件,则需要异位Hoxa2表达达到正常水平的100%。另一方面,异位Hoxa2在非生理水平(正常水平的200%)过表达导致颅面骨骼结构几乎完全丧失。此外,在cncc中异位的Hoxa5过表达,虽然也会导致严重的颅面缺陷,但不会诱导pa1来源的cncc发生同质性变化,这表明Hoxa2在重塑hox阴性cncc子集中的特异性。这些结果调和了先前发表的实验中的一些差异,并表明不同的cncc亚群对异位水平的Hox表达具有不同的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Developmental Biology
Journal of Developmental Biology Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
4.10
自引率
18.50%
发文量
44
审稿时长
11 weeks
期刊介绍: The Journal of Developmental Biology (ISSN 2221-3759) is an international, peer-reviewed, quick-refereeing, open access journal, which publishes reviews, research papers and communications on the development of multicellular organisms at the molecule, cell, tissue, organ and whole organism levels. Our aim is to encourage researchers to effortlessly publish their new findings or concepts rapidly in an open access medium, overseen by their peers. There is no restriction on the length of the papers; the full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Journal of Developmental Biology focuses on: -Development mechanisms and genetics -Cell differentiation -Embryonal development -Tissue/organism growth -Metamorphosis and regeneration of the organisms. It involves many biological fields, such as Molecular biology, Genetics, Physiology, Cell biology, Anatomy, Embryology, Cancer research, Neurobiology, Immunology, Ecology, Evolutionary biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信