{"title":"Gas-Liquid Foam Dynamics: From Structural Elements to Continuum Descriptions","authors":"P. Stewart, S. Hilgenfeldt","doi":"10.1146/annurev-fluid-032822-125417","DOIUrl":null,"url":null,"abstract":"Gas-liquid foams are important in applications ranging from oil recovery and mineral flotation to food science and microfluidics. Beyond their practical use, they represent an intriguing prototype of a soft material with a complex, viscoelastic rheological response. Crucially, foams allow detailed access to fluid-dynamical processes on the mesoscale of bubbles underlying the large-scale material behavior. This review emphasizes the importance of the geometry and interaction of mesoscale structural elements for the description of the dynamics of entire foams. Using examples including bulk flow of foam under steady shear, interfacial instabilities, and foam fracture through bubble rupture, this article highlights the wide variety of available theoretical descriptions, ranging from network modeling approaches coupling structural element equations of motion to full continuum models with elastoviscoplastic constitutive relations. Foams offer the opportunity to develop rigorous links between such disparate descriptions, providing a blueprint for physical modeling of dynamical multiscale systems with complex structure. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":25.4000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-032822-125417","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 6
Abstract
Gas-liquid foams are important in applications ranging from oil recovery and mineral flotation to food science and microfluidics. Beyond their practical use, they represent an intriguing prototype of a soft material with a complex, viscoelastic rheological response. Crucially, foams allow detailed access to fluid-dynamical processes on the mesoscale of bubbles underlying the large-scale material behavior. This review emphasizes the importance of the geometry and interaction of mesoscale structural elements for the description of the dynamics of entire foams. Using examples including bulk flow of foam under steady shear, interfacial instabilities, and foam fracture through bubble rupture, this article highlights the wide variety of available theoretical descriptions, ranging from network modeling approaches coupling structural element equations of motion to full continuum models with elastoviscoplastic constitutive relations. Foams offer the opportunity to develop rigorous links between such disparate descriptions, providing a blueprint for physical modeling of dynamical multiscale systems with complex structure. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.