A strongly convergent algorithm for solving multiple set split equality equilibrium and fixed point problems in Banach spaces

Pub Date : 2023-05-01 DOI:10.1017/S0013091523000251
E. C. Godwin, O. Mewomo, T. O. Alakoya
{"title":"A strongly convergent algorithm for solving multiple set split equality equilibrium and fixed point problems in Banach spaces","authors":"E. C. Godwin, O. Mewomo, T. O. Alakoya","doi":"10.1017/S0013091523000251","DOIUrl":null,"url":null,"abstract":"Abstract In this article, using an Halpern extragradient method, we study a new iterative scheme for finding a common element of the set of solutions of multiple set split equality equilibrium problems consisting of pseudomonotone bifunctions and the set of fixed points for two finite families of Bregman quasi-nonexpansive mappings in the framework of p-uniformly convex Banach spaces, which are also uniformly smooth. For this purpose, we design an algorithm so that it does not depend on prior estimates of the Lipschitz-type constants for the pseudomonotone bifunctions. Furthermore, we present an application of our study for finding a common element of the set of solutions of multiple set split equality variational inequality problems and fixed point sets for two finite families of Bregman quasi-nonexpansive mappings. Finally, we conclude with two numerical experiments to support our proposed algorithm.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0013091523000251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract In this article, using an Halpern extragradient method, we study a new iterative scheme for finding a common element of the set of solutions of multiple set split equality equilibrium problems consisting of pseudomonotone bifunctions and the set of fixed points for two finite families of Bregman quasi-nonexpansive mappings in the framework of p-uniformly convex Banach spaces, which are also uniformly smooth. For this purpose, we design an algorithm so that it does not depend on prior estimates of the Lipschitz-type constants for the pseudomonotone bifunctions. Furthermore, we present an application of our study for finding a common element of the set of solutions of multiple set split equality variational inequality problems and fixed point sets for two finite families of Bregman quasi-nonexpansive mappings. Finally, we conclude with two numerical experiments to support our proposed algorithm.
分享
查看原文
Banach空间中多集分裂等式平衡及不动点问题的强收敛算法
摘要本文利用Halpern超梯度方法,研究了在p-一致凸Banach空间框架下,由伪单调双函数和两个有限族Bregman拟非扩张映射的不动点组成的多集分裂等式平衡问题解集的一个公共元素的一个新迭代方案,它们也是均匀光滑的。为此,我们设计了一种算法,使其不依赖于伪单调双函数的Lipschitz型常数的先验估计。此外,我们还应用我们的研究来寻找两个有限族Bregman拟非扩张映射的多集分裂等式变分不等式问题和不动点集解集的一个公共元素。最后,我们通过两个数值实验来支持我们提出的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信