Hidden Diversity in the Mountain Chorus Frog (Pseudacris brachyphona) and the Diagnosis of a New Species of Chorus Frog in the Southeastern United States
{"title":"Hidden Diversity in the Mountain Chorus Frog (Pseudacris brachyphona) and the Diagnosis of a New Species of Chorus Frog in the Southeastern United States","authors":"O. Ospina, Lynee Tieu, J. J. Apodaca, E. Lemmon","doi":"10.1643/CH2020009","DOIUrl":null,"url":null,"abstract":"A major driver generating amphibian diversity in the Appalachian Mountains is the complex paleogeography of the zone. Although the Appalachian Mountains have been widely studied, much of its amphibian phylogeography remains poorly known. The Mountain Chorus Frog (Pseudacris brachyphona) is one example of an understudied organism due to its elusiveness, patchy distribution, and short breeding seasons. Phylogenetic studies have suggested the existence of divergent lineages within P. brachyphona; however, insufficient sampling and the lack of diagnostic morphological traits have prevented further assessment of their taxonomic status. Using a genome-wide nuclear data set obtained via anchored hybrid enrichment, acoustic data, and ecological modeling, we tested for the existence of cryptic species within P. brachyphona. Our species tree estimation supports previous mitochondrial-based phylogenetic hypotheses that separate P. brachyphona into the Northern and Southern clades. Population genetic clustering also shows a sharp genetic break, which is concordant with these clades. Admixture was observed between the Northern clade and another chorus frog species (P. feriarum). Analysis of advertisement calls shows a divergent, faster pulse rate, and higher dominant frequency call for the Southern clade in comparison to the Northern clade and other trilling chorus frogs. Furthermore, species distribution models showed that habitat suitability for the Southern clade included pine-dominated and drier areas compared to the Northern clade. In light of the genetic, acoustic, and ecological divergence between the clades, we propose to elevate the taxonomic status of the Southern clade and name this new species the Collinses' Mountain Chorus Frog (P. collinsorum, new species). The new species ranges across northern Alabama, and extends into Georgia, eastern Mississippi, and southern Tennessee. Pseudacris collinsorum, new species, is geographically separated from its sister species, P. brachyphona, by the Tennessee River and surrounding Blue Ridge Escarpment. This study highlights the need for genus-wide, population-level genetic assessments and integrative data sets to uncover diversity within anurans.","PeriodicalId":10701,"journal":{"name":"Copeia","volume":"108 1","pages":"778 - 795"},"PeriodicalIF":2.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Copeia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1643/CH2020009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
A major driver generating amphibian diversity in the Appalachian Mountains is the complex paleogeography of the zone. Although the Appalachian Mountains have been widely studied, much of its amphibian phylogeography remains poorly known. The Mountain Chorus Frog (Pseudacris brachyphona) is one example of an understudied organism due to its elusiveness, patchy distribution, and short breeding seasons. Phylogenetic studies have suggested the existence of divergent lineages within P. brachyphona; however, insufficient sampling and the lack of diagnostic morphological traits have prevented further assessment of their taxonomic status. Using a genome-wide nuclear data set obtained via anchored hybrid enrichment, acoustic data, and ecological modeling, we tested for the existence of cryptic species within P. brachyphona. Our species tree estimation supports previous mitochondrial-based phylogenetic hypotheses that separate P. brachyphona into the Northern and Southern clades. Population genetic clustering also shows a sharp genetic break, which is concordant with these clades. Admixture was observed between the Northern clade and another chorus frog species (P. feriarum). Analysis of advertisement calls shows a divergent, faster pulse rate, and higher dominant frequency call for the Southern clade in comparison to the Northern clade and other trilling chorus frogs. Furthermore, species distribution models showed that habitat suitability for the Southern clade included pine-dominated and drier areas compared to the Northern clade. In light of the genetic, acoustic, and ecological divergence between the clades, we propose to elevate the taxonomic status of the Southern clade and name this new species the Collinses' Mountain Chorus Frog (P. collinsorum, new species). The new species ranges across northern Alabama, and extends into Georgia, eastern Mississippi, and southern Tennessee. Pseudacris collinsorum, new species, is geographically separated from its sister species, P. brachyphona, by the Tennessee River and surrounding Blue Ridge Escarpment. This study highlights the need for genus-wide, population-level genetic assessments and integrative data sets to uncover diversity within anurans.
期刊介绍:
Founded in 1913, Copeia is a highly respected international journal dedicated to the publication of high quality, original research papers on the behavior, conservation, ecology, genetics, morphology, evolution, physiology, systematics and taxonomy of extant and extinct fishes, amphibians, and reptiles. Copeia is published electronically and is available through BioOne. Articles are published online first, and print issues appear four times per year. In addition to research articles, Copeia publishes invited review papers, book reviews, and compiles virtual issues on topics of interest drawn from papers previously published in the journal.