On the structure of the Levinson center for monotone non-autonomous dynamical systems with a first integral

IF 1.4 4区 数学 Q1 MATHEMATICS
D. Cheban
{"title":"On the structure of the Levinson center for monotone non-autonomous dynamical systems with a first integral","authors":"D. Cheban","doi":"10.37193/cjm.2022.01.07","DOIUrl":null,"url":null,"abstract":"In this paper we give a description of the structure of compact global attractor (Levinson center) for monotone Bohr/Levitan almost periodic dynamical system $x'=f(t,x)$ (*) with the strictly monotone first integral. It is shown that Levinson center of equation (*) consists of the Bohr/Levitan almost periodic (respectively, almost automorphic, recurrent or Poisson stable) solutions. We establish the main results in the framework of general non-autonomous (cocycle) dynamical systems. We also give some applications of theses results to different classes of differential/difference equations.","PeriodicalId":50711,"journal":{"name":"Carpathian Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37193/cjm.2022.01.07","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we give a description of the structure of compact global attractor (Levinson center) for monotone Bohr/Levitan almost periodic dynamical system $x'=f(t,x)$ (*) with the strictly monotone first integral. It is shown that Levinson center of equation (*) consists of the Bohr/Levitan almost periodic (respectively, almost automorphic, recurrent or Poisson stable) solutions. We establish the main results in the framework of general non-autonomous (cocycle) dynamical systems. We also give some applications of theses results to different classes of differential/difference equations.
具有一阶积分的单调非自治动力系统的Levinson中心结构
本文描述了具有严格单调第一积分的单调Bohr/Levitan概周期动力系统$x’=f(t,x)$(*)的紧致全局吸引子(Levinson中心)的结构。结果表明,方程(*)的Levinson中心由Bohr/Levitan概周期(分别为概自同构、递归或泊松稳定)解组成。我们在一般非自治(共循环)动力系统的框架下建立了主要结果。我们还将这些结果应用于不同类别的微分/差分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carpathian Journal of Mathematics
Carpathian Journal of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
7.10%
发文量
21
审稿时长
>12 weeks
期刊介绍: Carpathian Journal of Mathematics publishes high quality original research papers and survey articles in all areas of pure and applied mathematics. It will also occasionally publish, as special issues, proceedings of international conferences, generally (co)-organized by the Department of Mathematics and Computer Science, North University Center at Baia Mare. There is no fee for the published papers but the journal offers an Open Access Option to interested contributors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信