Dynamic space–time panel data models: An eigendecomposition-based bias-corrected least squares procedure

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Georges Bresson , Anoop Chaturvedi
{"title":"Dynamic space–time panel data models: An eigendecomposition-based bias-corrected least squares procedure","authors":"Georges Bresson ,&nbsp;Anoop Chaturvedi","doi":"10.1016/j.spasta.2023.100758","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Jin et al. (2020) proposed an efficient, distribution-free least squares estimation<span><span> method that utilizes the eigendecomposition of a weight matrix in a dynamic space–time pooled </span>panel data model<span>. Their three-step approach is very powerful compared to the well-known instrumental variable techniques. Unfortunately, for short panels, their method can lead to biased estimates of the autoregressive time dependence parameter and the spatio-temporal diffusion parameter, even when using their bias-corrected estimator. We propose a bias correction method inspired from Bun and Carree (2005, 2006) of the Jin et al. (2020) procedure. We also extend their eigendecomposition-based least squares procedure to the random effects model, the </span></span></span>fixed effects model<span>, the Mundlak-type and Chamberlain-type correlated random effects models, the Hausman–Taylor model and the common correlated effects model. Extensive Monte Carlo experiments show the good finite sample properties of the proposed estimators. An application on the link between pollution and economic activities, using a dynamic space–time STIRPAT model with common correlated effects on a panel of 81 countries over 1991–2015, shows the relevance of this approach. It underlines the importance of human activities in the pollution growth while reforestation is one of the most important levers to reduce the CO</span></span><span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> emissions per capita.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Jin et al. (2020) proposed an efficient, distribution-free least squares estimation method that utilizes the eigendecomposition of a weight matrix in a dynamic space–time pooled panel data model. Their three-step approach is very powerful compared to the well-known instrumental variable techniques. Unfortunately, for short panels, their method can lead to biased estimates of the autoregressive time dependence parameter and the spatio-temporal diffusion parameter, even when using their bias-corrected estimator. We propose a bias correction method inspired from Bun and Carree (2005, 2006) of the Jin et al. (2020) procedure. We also extend their eigendecomposition-based least squares procedure to the random effects model, the fixed effects model, the Mundlak-type and Chamberlain-type correlated random effects models, the Hausman–Taylor model and the common correlated effects model. Extensive Monte Carlo experiments show the good finite sample properties of the proposed estimators. An application on the link between pollution and economic activities, using a dynamic space–time STIRPAT model with common correlated effects on a panel of 81 countries over 1991–2015, shows the relevance of this approach. It underlines the importance of human activities in the pollution growth while reforestation is one of the most important levers to reduce the CO2 emissions per capita.

动态时空面板数据模型:基于特征分解的偏差校正最小二乘法
Jin等人(2020)提出了一种有效的、无分布的最小二乘估计方法,该方法利用动态时空池面板数据模型中权重矩阵的特征分解。与众所周知的工具变量技术相比,他们的三步方法非常强大。不幸的是,对于短面板,他们的方法可能导致自回归时间依赖参数和时空扩散参数的有偏差估计,即使使用他们的偏差校正估计器。我们提出了一种偏差校正方法,灵感来自Jin等人(2020)程序中的Bun和Carree(2005, 2006)。我们还将基于特征分解的最小二乘方法推广到随机效应模型、固定效应模型、mundlaktype和Chamberlain-type相关随机效应模型、Hausman-Taylor模型和常见相关效应模型。大量的蒙特卡罗实验表明,所提出的估计器具有良好的有限样本特性。在1991年至2015年的81个国家的面板上,使用具有共同相关效应的动态时空STIRPAT模型,对污染与经济活动之间的联系进行了应用,显示了这种方法的相关性。它强调了人类活动在污染增长中的重要性,而重新造林是减少人均二氧化碳排放量的最重要杠杆之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信