Rapid Continuous 3D Printing via Orthogonal Dual-Color Photoinitiation and Photoinhibition.

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
3D Printing and Additive Manufacturing Pub Date : 2024-04-01 Epub Date: 2024-04-16 DOI:10.1089/3dp.2022.0278
Min Hu, Haobo Cheng, Yunpeng Feng
{"title":"Rapid Continuous 3D Printing via Orthogonal Dual-Color Photoinitiation and Photoinhibition.","authors":"Min Hu, Haobo Cheng, Yunpeng Feng","doi":"10.1089/3dp.2022.0278","DOIUrl":null,"url":null,"abstract":"<p><p>Stereolithographic additive manufacturing technology has developed from point-by-point scanning exposure to layer-by-layer masking curing and even volumetric printing. Rapid prototyping is one of the important goals pursued by researchers. A continuous three-dimensional (3D) printing system based on the dual-color photoinitiation and photoinhibition is proposed with the aim of further improving printing speed. The process of continuous 3D printing is realized through the anti-polymerization layer between the cured part and the window generated by the ultraviolet (UV) light sheet (355 nm), and dynamic masking with the blue light (470 nm). The volume of the anti-polymerization layer can be adjusted by the intensity ratio of the incident lights (<i>I</i><sub>UV, 0</sub>/<i>I</i><sub>blue,0</sub>) and the size of UV laser spot to enhance the reflow filling rate of the liquid resin. For the orthogonal Gaussian anti-polymerization layer, an intensity ratio of 28.6 allows for an inhibition volume of 97.1% of the desired rectangular anti-polymerization zone with a height of 1 mm. The simulation analysis of continuous 3D printing process by flow-structure interaction reveals that the increase of the thickness of the anti-polymerization layer effectively improves the filling rate of the resin and the cross-sectional area of printing, and reduces the stress of the cured part. The experiments with two different 3D structures printing demonstrate that the filling rate and the stress have virtually no effect on the printing process at a large-scale thickness of the anti-polymerization layer, and the printing speed is capable of reaching 200 μm/s. Certainly, the printing volume and complexity can be further improved with the improvement of the system and the optimization of the resin.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0278","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Stereolithographic additive manufacturing technology has developed from point-by-point scanning exposure to layer-by-layer masking curing and even volumetric printing. Rapid prototyping is one of the important goals pursued by researchers. A continuous three-dimensional (3D) printing system based on the dual-color photoinitiation and photoinhibition is proposed with the aim of further improving printing speed. The process of continuous 3D printing is realized through the anti-polymerization layer between the cured part and the window generated by the ultraviolet (UV) light sheet (355 nm), and dynamic masking with the blue light (470 nm). The volume of the anti-polymerization layer can be adjusted by the intensity ratio of the incident lights (IUV, 0/Iblue,0) and the size of UV laser spot to enhance the reflow filling rate of the liquid resin. For the orthogonal Gaussian anti-polymerization layer, an intensity ratio of 28.6 allows for an inhibition volume of 97.1% of the desired rectangular anti-polymerization zone with a height of 1 mm. The simulation analysis of continuous 3D printing process by flow-structure interaction reveals that the increase of the thickness of the anti-polymerization layer effectively improves the filling rate of the resin and the cross-sectional area of printing, and reduces the stress of the cured part. The experiments with two different 3D structures printing demonstrate that the filling rate and the stress have virtually no effect on the printing process at a large-scale thickness of the anti-polymerization layer, and the printing speed is capable of reaching 200 μm/s. Certainly, the printing volume and complexity can be further improved with the improvement of the system and the optimization of the resin.

正交双色光引发和光抑制快速连续3D打印
立体光刻增材制造技术已从逐点扫描曝光发展到逐层掩膜固化,甚至是体积打印。快速成型是研究人员追求的重要目标之一。为了进一步提高打印速度,我们提出了一种基于双色光引发和光抑制的连续三维(3D)打印系统。连续三维打印过程是通过在固化部分和紫外线(UV)光片(355 nm)产生的窗口之间的反聚合层,以及蓝光(470 nm)的动态遮蔽来实现的。防聚合层的体积可通过入射光的强度比(IUV, 0/Iblue,0)和紫外激光光斑的大小来调节,以提高液体树脂的回流填充率。对于正交高斯防聚合层,28.6 的强度比可以使高度为 1 毫米的理想矩形防聚合区的抑制体积达到 97.1%。流动-结构相互作用连续三维打印过程的模拟分析表明,增加反聚合层的厚度可有效提高树脂的填充率和打印截面积,并降低固化部件的应力。两种不同三维结构的打印实验表明,在抗聚合层厚度较大的情况下,填充率和应力对打印过程几乎没有影响,打印速度可以达到 200 μm/s。当然,随着系统的改进和树脂的优化,印刷量和复杂性还可以进一步提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信