The Bose-Einstein statistics: Remarks on Debye, Natanson, and Ehrenfest contributions and the emergence of indistinguishability principle for quantum particles

Q1 Arts and Humanities
J. Spałek
{"title":"The Bose-Einstein statistics: Remarks on Debye, Natanson, and Ehrenfest contributions and the emergence of indistinguishability principle for quantum particles","authors":"J. Spałek","doi":"10.4467/2543702xshs.20.013.12569","DOIUrl":null,"url":null,"abstract":"The principal mathematical idea behind the statistical properties of black-body radiation (photons) was introduced already by L. Boltzmann (1877/2015) and used by M. Planck (1900; 1906) to derive the frequency distribution of radiation (Planck’s law) when its discrete (quantum) structure was additionally added to the reasoning. The fundamental physical idea – the principle of indistinguishability of the quanta (photons) – had been somewhat hidden behind the formalism and evolved slowly. Here the role of P. Debye (1910), H. Kamerlingh Onnes and P. Ehrenfest (1914) is briefly elaborated and the crucial role of W. Natanson (1911a; 1911b; 1913) is emphasized. The reintroduction of this Natanson’s statistics by S. N. Bose (1924/2009) for light quanta (called photons since the late 1920s), and its subsequent generalization to material particles by A. Einstein (1924; 1925) is regarded as the most direct and transparent, but involves the concept of grand canonical ensemble of J. W. Gibbs (1902/1981), which in a way obscures the indistinguishability of the particles involved. It was ingeniously reintroduced by P. A. M. Dirac (1926) via postulating (imposing) the transposition symmetry onto the many-particle wave function. The above statements are discussed in this paper, including the recent idea of the author (Spałek 2020) of transformation (transmutation) – under specific conditions – of the indistinguishable particles into the corresponding to them distinguishable quantum particles. The last remark may serve as a form of the author’s post scriptum to the indistinguishability principle.","PeriodicalId":36875,"journal":{"name":"Studia Historiae Scientiarum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Historiae Scientiarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4467/2543702xshs.20.013.12569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 5

Abstract

The principal mathematical idea behind the statistical properties of black-body radiation (photons) was introduced already by L. Boltzmann (1877/2015) and used by M. Planck (1900; 1906) to derive the frequency distribution of radiation (Planck’s law) when its discrete (quantum) structure was additionally added to the reasoning. The fundamental physical idea – the principle of indistinguishability of the quanta (photons) – had been somewhat hidden behind the formalism and evolved slowly. Here the role of P. Debye (1910), H. Kamerlingh Onnes and P. Ehrenfest (1914) is briefly elaborated and the crucial role of W. Natanson (1911a; 1911b; 1913) is emphasized. The reintroduction of this Natanson’s statistics by S. N. Bose (1924/2009) for light quanta (called photons since the late 1920s), and its subsequent generalization to material particles by A. Einstein (1924; 1925) is regarded as the most direct and transparent, but involves the concept of grand canonical ensemble of J. W. Gibbs (1902/1981), which in a way obscures the indistinguishability of the particles involved. It was ingeniously reintroduced by P. A. M. Dirac (1926) via postulating (imposing) the transposition symmetry onto the many-particle wave function. The above statements are discussed in this paper, including the recent idea of the author (Spałek 2020) of transformation (transmutation) – under specific conditions – of the indistinguishable particles into the corresponding to them distinguishable quantum particles. The last remark may serve as a form of the author’s post scriptum to the indistinguishability principle.
玻色-爱因斯坦统计:评Debye、Natanson和Ehrenfest的贡献和量子粒子不可分辨原理的出现
黑体辐射(光子)统计特性背后的主要数学思想已经由L.Boltzmann(1877/2015)引入,并由M.Planck(1900;1906)在推理中添加了辐射的离散(量子)结构时用于推导辐射的频率分布(普朗克定律)。基本的物理概念——量子(光子)不可区分的原理——在某种程度上隐藏在形式主义背后,并缓慢发展。本文简要阐述了P.Debye(1910)、H.Kamerlingh Onnes和P.Ehrenfest(1914)的作用,并强调了W.Natanson(1911a;1911b;1913)的关键作用。s.N.Bose(1924/2009)对光量子(自20世纪20年代末以来称为光子)重新引入了这一Natanson统计,以及A.Einstein(1924;1925)随后对材料粒子的推广被认为是最直接和透明的,但涉及到J.W.Gibbs(1902/1981)的大正则系综概念,这在某种程度上掩盖了所涉及的颗粒的不可区分性。它是由P.A.M.Dirac(1926)通过在多粒子波函数上假设(强加)换位对称性而巧妙地重新引入的。本文讨论了上述陈述,包括作者(Spałek 2020)最近提出的在特定条件下将不可区分的粒子转化(嬗变)为与其相对应的可区分量子粒子的想法。最后一句话可以作为作者对不可区分原则的后脚本的一种形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studia Historiae Scientiarum
Studia Historiae Scientiarum Arts and Humanities-History
CiteScore
1.10
自引率
0.00%
发文量
22
审稿时长
36 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信