{"title":"Turán numbers \n \n \n T\n \n (\n \n n\n ,\n 5\n ,\n 3\n \n )\n \n \n $T(n,5,3)$\n and graphs without induced 5-cycles","authors":"Iliya Bluskov, Jan de Heer, Alexander Sidorenko","doi":"10.1002/jgt.23021","DOIUrl":null,"url":null,"abstract":"<p>The Turán number <math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $T(n,5,3)$</annotation>\n </semantics></math> is the minimum size of a system of triples out of a base set <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> of <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> elements such that every quintuple in <math>\n <semantics>\n <mrow>\n <mi>X</mi>\n </mrow>\n <annotation> $X$</annotation>\n </semantics></math> contains a triple from the system. The exact values of <math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $T(n,5,3)$</annotation>\n </semantics></math> are known for <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>≤</mo>\n \n <mn>17</mn>\n </mrow>\n <annotation> $n\\le 17$</annotation>\n </semantics></math>. Turán conjectured that <math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mfenced>\n <mfrac>\n <mi>m</mi>\n \n <mn>3</mn>\n </mfrac>\n </mfenced>\n </mrow>\n <annotation> $T(2m,5,3)=2\\left(\\genfrac{}{}{0.0pt}{}{m}{3}\\right)$</annotation>\n </semantics></math>, and no counterexamples have been found so far. If this conjecture is true, then <math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>5</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n <mrow>\n <mo>⌈</mo>\n <mrow>\n <mi>m</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>∕</mo>\n \n <mn>6</mn>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n <annotation> $T(2m+1,5,3)\\ge \\lceil m(m-2)(2m+1)\\unicode{x02215}6\\rceil $</annotation>\n </semantics></math>. We prove the matching upper bound for all <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mn>2</mn>\n \n <mi>m</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n \n <mo>></mo>\n \n <mn>17</mn>\n </mrow>\n <annotation> $n=2m+1\\gt 17$</annotation>\n </semantics></math> except <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>=</mo>\n \n <mn>27</mn>\n </mrow>\n <annotation> $n=27$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"104 3","pages":"451-460"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The Turán number is the minimum size of a system of triples out of a base set of elements such that every quintuple in contains a triple from the system. The exact values of are known for . Turán conjectured that , and no counterexamples have been found so far. If this conjecture is true, then . We prove the matching upper bound for all except .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .