Design and Modeling of Piezoelectric-AlN-based Acoustic Sensor for Sound Pressure Level Measurements

IF 2.5 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
W. Ali, Aditi, M. Prasad
{"title":"Design and Modeling of Piezoelectric-AlN-based Acoustic Sensor for Sound Pressure Level Measurements","authors":"W. Ali, Aditi, M. Prasad","doi":"10.1080/02564602.2023.2169778","DOIUrl":null,"url":null,"abstract":"This paper illustrates the design of a piezoelectric acoustic sensor based on AlN to be used for aero-acoustic measurements. A significant prerequisite for such sensors is a large sound pressure level (SPL) and flat frequency response in the auditory band (20 Hz to 20 kHz). That is why this sensor has been designed to measure upto an SPL of 180 dB. The design of the device has been achieved through the MEMS-CAD tool Coventorware. The Si-diaphragm thickness has been optimized for the desired SPL range using Coventorware for three different sizes of the device, namely 1.5 mm × 1.5 mm, 1.75 mm × 1.75 mm and 2 mm × 2 mm. The cavity developed after the diaphragm formation is connected to the exterior environment through a microchannel. The microchannel was designed for low cut-off frequency. The complete frequency response of all the three sensor structures has been determined. Moreover, a comparison has been drawn among the three devices in terms of parameters such as low cut-off frequency, resonance frequency, and sensitivity to find the optimized device size. The low cut-off frequency, resonance frequency, and flat band sensitivity of the optimized device are 35 Hz, 83 kHz, and 170 µV/Pa, respectively. In addition to this, a proposed fabrication process flow of the device has been presented.","PeriodicalId":13252,"journal":{"name":"IETE Technical Review","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IETE Technical Review","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/02564602.2023.2169778","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper illustrates the design of a piezoelectric acoustic sensor based on AlN to be used for aero-acoustic measurements. A significant prerequisite for such sensors is a large sound pressure level (SPL) and flat frequency response in the auditory band (20 Hz to 20 kHz). That is why this sensor has been designed to measure upto an SPL of 180 dB. The design of the device has been achieved through the MEMS-CAD tool Coventorware. The Si-diaphragm thickness has been optimized for the desired SPL range using Coventorware for three different sizes of the device, namely 1.5 mm × 1.5 mm, 1.75 mm × 1.75 mm and 2 mm × 2 mm. The cavity developed after the diaphragm formation is connected to the exterior environment through a microchannel. The microchannel was designed for low cut-off frequency. The complete frequency response of all the three sensor structures has been determined. Moreover, a comparison has been drawn among the three devices in terms of parameters such as low cut-off frequency, resonance frequency, and sensitivity to find the optimized device size. The low cut-off frequency, resonance frequency, and flat band sensitivity of the optimized device are 35 Hz, 83 kHz, and 170 µV/Pa, respectively. In addition to this, a proposed fabrication process flow of the device has been presented.
声压级测量用压电铝基声传感器的设计与建模
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IETE Technical Review
IETE Technical Review 工程技术-电信学
CiteScore
5.70
自引率
4.20%
发文量
48
审稿时长
9 months
期刊介绍: IETE Technical Review is a world leading journal which publishes state-of-the-art review papers and in-depth tutorial papers on current and futuristic technologies in the area of electronics and telecommunications engineering. We also publish original research papers which demonstrate significant advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信