Computational Technique for Crack Propagation Simulation in Viscoelastic Solid Propellant

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE
Qiangqiang Jiang, Xuan-xuan Lv, Huiru Cui, Teng Ma
{"title":"Computational Technique for Crack Propagation Simulation in Viscoelastic Solid Propellant","authors":"Qiangqiang Jiang, Xuan-xuan Lv, Huiru Cui, Teng Ma","doi":"10.1155/2023/8827953","DOIUrl":null,"url":null,"abstract":"To further investigate the fracture response in propellant grain, numerical methodology is proposed to cope with crack propagation simulation especially for the mixed mode condition. The numerical discrete scheme of the propellant linear viscoelastic constitutive model is proposed, which provides a key means for the simulation of crack propagation. In order to simulate the cohesive traction distribution on the new crack surface, the extrinsic Park-Paulino-Roesler (PPR) cohesive zone model (CZM) is introduced. To let the crack propagate along any direction determined, element splitting technique and its corresponding topological operations are proposed step by step. Then, computational simulation implementation process is explained in greater detail. Typical fracture problem, single edge-notched tension test (SENT) is solved to demonstrate the efficiency and accuracy of the proposed method. In addition, double edge-notched tension test (DENT) as well as plate tension test with a slant crack is conducted to show the special fracture characters in viscoelastic solid propellant, like time dependence. Computational results reveal that the method proposed can be utilized in further fracture investigation in solid propellant combined with the experimental findings.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8827953","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

To further investigate the fracture response in propellant grain, numerical methodology is proposed to cope with crack propagation simulation especially for the mixed mode condition. The numerical discrete scheme of the propellant linear viscoelastic constitutive model is proposed, which provides a key means for the simulation of crack propagation. In order to simulate the cohesive traction distribution on the new crack surface, the extrinsic Park-Paulino-Roesler (PPR) cohesive zone model (CZM) is introduced. To let the crack propagate along any direction determined, element splitting technique and its corresponding topological operations are proposed step by step. Then, computational simulation implementation process is explained in greater detail. Typical fracture problem, single edge-notched tension test (SENT) is solved to demonstrate the efficiency and accuracy of the proposed method. In addition, double edge-notched tension test (DENT) as well as plate tension test with a slant crack is conducted to show the special fracture characters in viscoelastic solid propellant, like time dependence. Computational results reveal that the method proposed can be utilized in further fracture investigation in solid propellant combined with the experimental findings.
粘弹性固体推进剂裂纹扩展模拟的计算技术
为了进一步研究推进剂药柱的断裂响应,提出了数值方法来模拟裂纹扩展,特别是在混合模式条件下。提出了推进剂线性粘弹性本构模型的数值离散格式,为模拟裂纹扩展提供了关键手段。为了模拟新裂纹表面的内聚牵引力分布,引入了非本征Park-Paulino-Roesler(PPR)内聚区模型(CZM)。为了使裂纹沿任意确定的方向扩展,逐步提出了单元分裂技术及其相应的拓扑运算。然后,对计算仿真的实现过程进行了较为详细的说明。通过对典型断裂问题的求解,证明了该方法的有效性和准确性。此外,还进行了双边缺口拉伸试验(DENT)和斜裂纹平板拉伸试验,以显示粘弹性固体推进剂的特殊断裂特性,如时间依赖性。计算结果表明,结合实验结果,该方法可用于固体推进剂断裂的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信