Bridging the Gap Between Artificial Intelligence Research and Clinical Practice in Cardiovascular Science: What the Clinician Needs to Know

IF 2.6 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Emily Shipley, Martha Joddrell, G. Lip, Yalin Zheng
{"title":"Bridging the Gap Between Artificial Intelligence Research and Clinical Practice in Cardiovascular Science: What the Clinician Needs to Know","authors":"Emily Shipley, Martha Joddrell, G. Lip, Yalin Zheng","doi":"10.15420/aer.2022.07","DOIUrl":null,"url":null,"abstract":"by the CHA 2 DS 2 VASc score. 5 More widespread use has the potential to improve patient-centred care by further individualising a patient’s level of risk, thus enabling the management of modifiable risk factors. An added benefit would be the ability to account for the dynamic nature of risk in certain cardiovascular outcomes. For example, ML and the use of mobile health data could enable stroke risk prediction to adapt to treatment changes over time and incident risk factors, in contrast with the static nature of current standard risk scores. 5 the explosion creation currently. methods of enabling improvement in performance of ML models. prediction of including AF and as supraventricular ectopic beat and to better use of of","PeriodicalId":8412,"journal":{"name":"Arrhythmia & Electrophysiology Review","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arrhythmia & Electrophysiology Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15420/aer.2022.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

by the CHA 2 DS 2 VASc score. 5 More widespread use has the potential to improve patient-centred care by further individualising a patient’s level of risk, thus enabling the management of modifiable risk factors. An added benefit would be the ability to account for the dynamic nature of risk in certain cardiovascular outcomes. For example, ML and the use of mobile health data could enable stroke risk prediction to adapt to treatment changes over time and incident risk factors, in contrast with the static nature of current standard risk scores. 5 the explosion creation currently. methods of enabling improvement in performance of ML models. prediction of including AF and as supraventricular ectopic beat and to better use of of
弥合人工智能研究与心血管科学临床实践之间的差距:临床医生需要知道的
通过CHA 2 ds2 VASc评分。更广泛的使用有可能通过进一步个性化患者的风险水平来改善以患者为中心的护理,从而使管理可改变的风险因素成为可能。一个额外的好处是能够解释某些心血管结果风险的动态性质。例如,与目前标准风险评分的静态性质相比,机器学习和移动健康数据的使用可以使中风风险预测适应治疗随时间的变化和事件风险因素。5 .目前爆炸产生。改进机器学习模型性能的方法。包括房颤和室上异位搏的预测及更好地利用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arrhythmia & Electrophysiology Review
Arrhythmia & Electrophysiology Review CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
5.10
自引率
6.70%
发文量
22
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信