On Fractional q-Integral Operators Involving the Basic Analogue of Multivariable Aleph-Function

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Dinesh Kumar, Frédéric Ayant, Kottakkaran Sooppy Nisar, Daya Lal Suthar
{"title":"On Fractional q-Integral Operators Involving the Basic Analogue of Multivariable Aleph-Function","authors":"Dinesh Kumar,&nbsp;Frédéric Ayant,&nbsp;Kottakkaran Sooppy Nisar,&nbsp;Daya Lal Suthar","doi":"10.1007/s40010-022-00796-7","DOIUrl":null,"url":null,"abstract":"<div><p>In the present article, we proposed the fractional-order Kober and generalized Weyl <i>q</i>-integrals involving a basic (or <i>q</i>-) analogue of multivariable Aleph-function. Similar assertions for the Riemann–Liouville and Weyl fractional <i>q</i>-integral transforms are also presented. Several corollaries are also established to strengthen the results. By specializing the various parameters and variables in the basic analogue of multivariable Aleph-function, we can obtain a large number of results involving a remarkably wide variety of useful basic functions.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-022-00796-7","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

In the present article, we proposed the fractional-order Kober and generalized Weyl q-integrals involving a basic (or q-) analogue of multivariable Aleph-function. Similar assertions for the Riemann–Liouville and Weyl fractional q-integral transforms are also presented. Several corollaries are also established to strengthen the results. By specializing the various parameters and variables in the basic analogue of multivariable Aleph-function, we can obtain a large number of results involving a remarkably wide variety of useful basic functions.

涉及多元函数基本类似的分数阶q-积分算子
在这篇文章中,我们提出了分数阶的Kober和广义Weyl的q-积分,涉及一个基本的(或q-)类似的多变量函数。对于Riemann-Liouville和Weyl分数阶q积分变换也给出了类似的断言。还建立了几个推论来加强结果。通过对多变量函数的基本模拟中的各种参数和变量进行专门化处理,我们可以得到涉及非常广泛的有用的基本函数的大量结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信