Ahmad R. Gharaibeh, Yaman M. Manaserh, Mohammad I. Tradat, Firas Alshatnawi, Scott N. Schiffres, B. Sammakia
{"title":"Using a Multi-Inlet/Outlet Manifold to Improve Heat Transfer and Flow Distribution of a Pin Fin Heat Sink","authors":"Ahmad R. Gharaibeh, Yaman M. Manaserh, Mohammad I. Tradat, Firas Alshatnawi, Scott N. Schiffres, B. Sammakia","doi":"10.1115/1.4054461","DOIUrl":null,"url":null,"abstract":"\n The increased power consumption and continued miniaturization of high-powered electronic components has presented many challenges to their thermal management. To improve the efficiency and reliability of these devices, the high amount of heat that they generate must be properly removed. In this paper, a three-dimensional numerical model has been developed and experimentally validated for several manifold heat sink designs. The goal was to enhance the heat sink's thermal performance while reducing the required pumping power by lowering the pressure drop across the heat sink. The considered designs were benchmarked to a commercially available heat sink in terms of their thermal and hydraulic performances. The proposed manifolds were designed to distribute fluid through alternating inlet and outlet branched internal channels. It was found that using the manifold design with 3 channels reduced the thermal resistance from 0.061 to 0.054 °C/W with a pressure drop reduction of 0.77 kPa from the commercial cold plate. A geometric parametric study was performed to investigate the effect of the manifold's internal channels width on the thermohydraulic performance of the proposed designs. It was found that the thermal resistance decreased as the manifold's channel width decreased, up until a certain width value, below which the thermal resistance started to increase while maintaining low pressure drop values. Where the thermal resistance significantly decreased in the 7 channels design by 16.4% and maintained a lower pressure drop value below 0.6 kpa.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054461","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 3
Abstract
The increased power consumption and continued miniaturization of high-powered electronic components has presented many challenges to their thermal management. To improve the efficiency and reliability of these devices, the high amount of heat that they generate must be properly removed. In this paper, a three-dimensional numerical model has been developed and experimentally validated for several manifold heat sink designs. The goal was to enhance the heat sink's thermal performance while reducing the required pumping power by lowering the pressure drop across the heat sink. The considered designs were benchmarked to a commercially available heat sink in terms of their thermal and hydraulic performances. The proposed manifolds were designed to distribute fluid through alternating inlet and outlet branched internal channels. It was found that using the manifold design with 3 channels reduced the thermal resistance from 0.061 to 0.054 °C/W with a pressure drop reduction of 0.77 kPa from the commercial cold plate. A geometric parametric study was performed to investigate the effect of the manifold's internal channels width on the thermohydraulic performance of the proposed designs. It was found that the thermal resistance decreased as the manifold's channel width decreased, up until a certain width value, below which the thermal resistance started to increase while maintaining low pressure drop values. Where the thermal resistance significantly decreased in the 7 channels design by 16.4% and maintained a lower pressure drop value below 0.6 kpa.
期刊介绍:
The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems.
Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.