{"title":"Heat blockage of air gap for inner overheating of high-voltage power cable and delay of early detection","authors":"Q. Xie, Hong Chen, Yanhua Yuan","doi":"10.1177/0734904120920818","DOIUrl":null,"url":null,"abstract":"Early detection for inner overheating of high-voltage cable is important for safe power supply. A new radial heat transfer model is developed for a typical 110 kV cable with an air gap layer. Numerical analyses are conducted for dynamic temperature field in cable induced by hot copper core with different thicknesses of air gap. The results show that the air gap has an important heat blockage for the outward heat transfer in cable. The air gap causes the temperature inside the overheated cable to rise faster and the temperature outside slower. The air gap not only reduces the response sensitivity of the surface temperature on inner overheating but also induces the inner layers to heat up and even break down. Finally, the non-dimensional temperatures on cable surface indicate that the detection of inner overheating cable would be delayed if the air gap is not considered in calculation models.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":"38 1","pages":"363 - 376"},"PeriodicalIF":1.9000,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0734904120920818","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0734904120920818","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Early detection for inner overheating of high-voltage cable is important for safe power supply. A new radial heat transfer model is developed for a typical 110 kV cable with an air gap layer. Numerical analyses are conducted for dynamic temperature field in cable induced by hot copper core with different thicknesses of air gap. The results show that the air gap has an important heat blockage for the outward heat transfer in cable. The air gap causes the temperature inside the overheated cable to rise faster and the temperature outside slower. The air gap not only reduces the response sensitivity of the surface temperature on inner overheating but also induces the inner layers to heat up and even break down. Finally, the non-dimensional temperatures on cable surface indicate that the detection of inner overheating cable would be delayed if the air gap is not considered in calculation models.
期刊介绍:
The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).