{"title":"A remark on the phase transition for the geodesic flow of a rank one surface of nonpositive curvature","authors":"K. Burns, Dong Chen","doi":"10.1080/14689367.2023.2229752","DOIUrl":null,"url":null,"abstract":"For any rank 1 nonpositively curved surface $M$, it was proved by Burns-Climenhaga-Fisher-Thompson that for any $q<1$, there exists a unique equilibrium state $\\mu_q$ for $q\\varphi^u$, where $\\varphi^u$ is the geometric potential. We show that as $q\\to 1-$, the weak$^*$ limit of $\\mu_q$ is the restriction of the Liouville measure to the regular set.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/14689367.2023.2229752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For any rank 1 nonpositively curved surface $M$, it was proved by Burns-Climenhaga-Fisher-Thompson that for any $q<1$, there exists a unique equilibrium state $\mu_q$ for $q\varphi^u$, where $\varphi^u$ is the geometric potential. We show that as $q\to 1-$, the weak$^*$ limit of $\mu_q$ is the restriction of the Liouville measure to the regular set.