{"title":"On the asymptotic behavior of solutions to a class of grand canonical master equations","authors":"Sabine Bogli, P. Vuillermot","doi":"10.4171/pm/2102","DOIUrl":null,"url":null,"abstract":"In this article we investigate the long time behavior of solutions to a class of infinitely many master equations defined from transition rates that are suitable for the description of a quantum system approaching thermodynamical equilibrium with a heat bath at fixed temperature and a reservoir consisting of one species of particles characterized by a fixed chemical potential. We do so by proving a result which pertains to the spectral resolution of the semigroup generated by the equations, whose infinitesimal generator is realized as a trace-class self-adjoint operator defined in a suitable weighted sequence space. This allows us to prove the existence of global solutions which all stabilize toward the grand canonical equilibrium probability distribution as the time variable becomes large, some of them doing so exponentially rapidly. When we set the chemical potential equal to zero, the stability statements continue to hold in the sense that all solutions converge toward the Gibbs probability distribution of the canonical ensemble which characterizes the equilibrium of the given system with a heat bath at fixed temperature.","PeriodicalId":51269,"journal":{"name":"Portugaliae Mathematica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portugaliae Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/pm/2102","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this article we investigate the long time behavior of solutions to a class of infinitely many master equations defined from transition rates that are suitable for the description of a quantum system approaching thermodynamical equilibrium with a heat bath at fixed temperature and a reservoir consisting of one species of particles characterized by a fixed chemical potential. We do so by proving a result which pertains to the spectral resolution of the semigroup generated by the equations, whose infinitesimal generator is realized as a trace-class self-adjoint operator defined in a suitable weighted sequence space. This allows us to prove the existence of global solutions which all stabilize toward the grand canonical equilibrium probability distribution as the time variable becomes large, some of them doing so exponentially rapidly. When we set the chemical potential equal to zero, the stability statements continue to hold in the sense that all solutions converge toward the Gibbs probability distribution of the canonical ensemble which characterizes the equilibrium of the given system with a heat bath at fixed temperature.
期刊介绍:
Since its foundation in 1937, Portugaliae Mathematica has aimed at publishing high-level research articles in all branches of mathematics. With great efforts by its founders, the journal was able to publish articles by some of the best mathematicians of the time. In 2001 a New Series of Portugaliae Mathematica was started, reaffirming the purpose of maintaining a high-level research journal in mathematics with a wide range scope.