Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production

IF 4.1 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yetzin Rodríguez Mejía, Fernando Romero Romero, Murali Venkata Basavanag Unnamatla, Maria Fernanda Ballesteros Rivas, Victor Varela Guerrero
{"title":"Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production","authors":"Yetzin Rodríguez Mejía, Fernando Romero Romero, Murali Venkata Basavanag Unnamatla, Maria Fernanda Ballesteros Rivas, Victor Varela Guerrero","doi":"10.1515/revic-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract As biodiesel (BD)/Fatty Acid Alkyl Esters (FAAE) is derived from vegetable oils and animal fats, it is a cost-effective alternative fuel that could complement diesel. The BD is processed from different catalytic routes of esterification and transesterification through homogeneous (alkaline and acid), heterogeneous and enzymatic catalysis. However, heterogeneous catalysts and biocatalysts play an essential role towards a sustainable alternative to homogeneous catalysts applied in biodiesel production. The main drawback is the supporting material. To overcome this, currently, Metal-Organic Frameworks (MOFs) have gained significant interest as supports for catalysts due to their extremely high surface area and numerous binding sites. This review focuses on the advantages of using various MOFs structures as supports for heterogeneous catalysts and biocatalysts for the eco-friendly biodiesel production process. The characteristics of these materials and their fabrication synthesis are briefly discussed. Moreover, we address in a general way basic items ranging from biodiesel synthesis to applied catalysts, giving great importance to the enzymatic part, mainly to the catalytic mechanism in esterification/transesterification reactions. We provide a summary with recommendations based on the limiting factors.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":"43 1","pages":"323 - 355"},"PeriodicalIF":4.1000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revic-2022-0014","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract As biodiesel (BD)/Fatty Acid Alkyl Esters (FAAE) is derived from vegetable oils and animal fats, it is a cost-effective alternative fuel that could complement diesel. The BD is processed from different catalytic routes of esterification and transesterification through homogeneous (alkaline and acid), heterogeneous and enzymatic catalysis. However, heterogeneous catalysts and biocatalysts play an essential role towards a sustainable alternative to homogeneous catalysts applied in biodiesel production. The main drawback is the supporting material. To overcome this, currently, Metal-Organic Frameworks (MOFs) have gained significant interest as supports for catalysts due to their extremely high surface area and numerous binding sites. This review focuses on the advantages of using various MOFs structures as supports for heterogeneous catalysts and biocatalysts for the eco-friendly biodiesel production process. The characteristics of these materials and their fabrication synthesis are briefly discussed. Moreover, we address in a general way basic items ranging from biodiesel synthesis to applied catalysts, giving great importance to the enzymatic part, mainly to the catalytic mechanism in esterification/transesterification reactions. We provide a summary with recommendations based on the limiting factors.
金属有机框架作为生物柴油生产的生物和多相催化剂支持
生物柴油(BD)/脂肪酸烷基酯(FAAE)是从植物油和动物脂肪中提取的,是一种经济有效的柴油替代燃料。BD通过均相(碱性和酸性)、多相和酶催化等不同的酯化和酯交换催化途径进行加工。然而,多相催化剂和生物催化剂对生物柴油生产中均相催化剂的可持续替代品起着至关重要的作用。主要的缺点是支撑材料。为了克服这一问题,目前,金属有机框架(mof)由于其极高的表面积和众多的结合位点而成为催化剂的载体,引起了人们的极大兴趣。本文综述了不同mof结构作为多相催化剂和生物催化剂在生态生物柴油生产过程中的优势。简要讨论了这些材料的特点及其制备方法。此外,我们从生物柴油的合成到应用催化剂的基本问题进行了一般性的讨论,其中非常重视酶的部分,主要是酯化/酯交换反应的催化机理。我们提供了一个总结,并根据限制因素提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Inorganic Chemistry
Reviews in Inorganic Chemistry 化学-分析化学
CiteScore
7.30
自引率
4.90%
发文量
20
审稿时长
1 months
期刊介绍: Reviews in Inorganic Chemistry (REVIC) is a quarterly, peer-reviewed journal that focuses on developments in inorganic chemistry. Technical reviews offer detailed synthesis protocols, reviews of methodology and descriptions of apparatus. Topics are treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are committed to high quality standards and rapid handling of the review and publication process. The journal publishes all aspects of solid-state, molecular and surface chemistry. Topics may be treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are commited to high quality standards and rapid handling of the review and publication process. Topics: -Main group chemistry- Transition metal chemistry- Coordination chemistry- Organometallic chemistry- Catalysis- Bioinorganic chemistry- Supramolecular chemistry- Ionic liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信