{"title":"Fine structure of the posterior midgut in the mite Anystis baccarum (L.).","authors":"S. Filimonova","doi":"10.2139/ssrn.4187451","DOIUrl":null,"url":null,"abstract":"Homology of the posterior midgut regions (PMG) in different phylogenetic lineages of acariform mites (superorder Acariformes) remains unresolved. In the order Trombidiformes, the ultrastructure of the PMG is known primarily in derived groups; thus this study focuses on species belonging to a relatively basal trombidiform family. PMG of Anystis baccarum consists of the colon and postcolon separated by a small intercolon. The fine structure of the colon and postcolon is close to that of the corresponding organs of sarcoptiform mites with the epithelium showing absorptive and endocytotic activity. The epithelial cells produce a variety of excretory vacuoles and a peritrophic matrix around the feces. Morover, the epithelium of the postcolon is characterized by the highest apical brush border and especially numerous mitochondria suggesting involvement in water and ion absorption. The intercolon functions as a sphincter lined with an epithelium capable of producing excretory granules. A pair of short blind extensions arises assimmetrically from the intercolon into the body cavity. Ultrastructurally, these extensions are similar to the arachnid Malpighian tubules and may be their reduced version. Rare endocrine-like cells have been observed in the colon and postcolon.","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthropod Structure & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2139/ssrn.4187451","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Homology of the posterior midgut regions (PMG) in different phylogenetic lineages of acariform mites (superorder Acariformes) remains unresolved. In the order Trombidiformes, the ultrastructure of the PMG is known primarily in derived groups; thus this study focuses on species belonging to a relatively basal trombidiform family. PMG of Anystis baccarum consists of the colon and postcolon separated by a small intercolon. The fine structure of the colon and postcolon is close to that of the corresponding organs of sarcoptiform mites with the epithelium showing absorptive and endocytotic activity. The epithelial cells produce a variety of excretory vacuoles and a peritrophic matrix around the feces. Morover, the epithelium of the postcolon is characterized by the highest apical brush border and especially numerous mitochondria suggesting involvement in water and ion absorption. The intercolon functions as a sphincter lined with an epithelium capable of producing excretory granules. A pair of short blind extensions arises assimmetrically from the intercolon into the body cavity. Ultrastructurally, these extensions are similar to the arachnid Malpighian tubules and may be their reduced version. Rare endocrine-like cells have been observed in the colon and postcolon.
期刊介绍:
Arthropod Structure & Development is a Journal of Arthropod Structural Biology, Development, and Functional Morphology; it considers manuscripts that deal with micro- and neuroanatomy, development, biomechanics, organogenesis in particular under comparative and evolutionary aspects but not merely taxonomic papers. The aim of the journal is to publish papers in the areas of functional and comparative anatomy and development, with an emphasis on the role of cellular organization in organ function. The journal will also publish papers on organogenisis, embryonic and postembryonic development, and organ or tissue regeneration and repair. Manuscripts dealing with comparative and evolutionary aspects of microanatomy and development are encouraged.