High-performance 3D Unstructured Mesh Deformation Using Rank Structured Matrix Computations

IF 0.9 Q3 COMPUTER SCIENCE, THEORY & METHODS
Rabab Alomairy, W. Bader, H. Ltaief, Y. Mesri, D. Keyes
{"title":"High-performance 3D Unstructured Mesh Deformation Using Rank Structured Matrix Computations","authors":"Rabab Alomairy, W. Bader, H. Ltaief, Y. Mesri, D. Keyes","doi":"10.1145/3512756","DOIUrl":null,"url":null,"abstract":"The Radial Basis Function (RBF) technique is an interpolation method that produces high-quality unstructured adaptive meshes. However, the RBF-based boundary problem necessitates solving a large dense linear system with cubic arithmetic complexity that is computationally expensive and prohibitive in terms of memory footprint. In this article, we accelerate the computations of 3D unstructured mesh deformation based on RBF interpolations by exploiting the rank structured property of the matrix operator. The main idea consists in approximating the matrix off-diagonal tiles up to an application-dependent accuracy threshold. We highlight the robustness of our multiscale solver by assessing its numerical accuracy using realistic 3D geometries. In particular, we model the 3D mesh deformation on a population of the novel coronaviruses. We report and compare performance results on various parallel systems against existing state-of-the-art matrix solvers.","PeriodicalId":42115,"journal":{"name":"ACM Transactions on Parallel Computing","volume":"9 1","pages":"1 - 23"},"PeriodicalIF":0.9000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Parallel Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

The Radial Basis Function (RBF) technique is an interpolation method that produces high-quality unstructured adaptive meshes. However, the RBF-based boundary problem necessitates solving a large dense linear system with cubic arithmetic complexity that is computationally expensive and prohibitive in terms of memory footprint. In this article, we accelerate the computations of 3D unstructured mesh deformation based on RBF interpolations by exploiting the rank structured property of the matrix operator. The main idea consists in approximating the matrix off-diagonal tiles up to an application-dependent accuracy threshold. We highlight the robustness of our multiscale solver by assessing its numerical accuracy using realistic 3D geometries. In particular, we model the 3D mesh deformation on a population of the novel coronaviruses. We report and compare performance results on various parallel systems against existing state-of-the-art matrix solvers.
使用秩结构矩阵计算的高性能三维非结构化网格变形
径向基函数(RBF)技术是一种产生高质量非结构化自适应网格的插值方法。然而,基于rbf的边界问题需要求解具有三次算术复杂度的大型密集线性系统,这在计算上是昂贵的,并且在内存占用方面令人望而却步。本文利用矩阵算子的秩结构特性,加速了基于RBF插值的三维非结构化网格变形的计算。其主要思想是将矩阵的非对角线瓷砖近似到与应用程序相关的精度阈值。我们强调我们的多尺度求解器的鲁棒性通过评估其数值精度使用现实的三维几何。特别是,我们对新型冠状病毒种群的3D网格变形进行了建模。我们报告并比较了各种并行系统与现有最先进的矩阵求解器的性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Parallel Computing
ACM Transactions on Parallel Computing COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
4.10
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信