FIELDS OF AN ULTRA-RELATIVISTIC BEAM OF CHARGED PARTICLES BETWEEN PARALLEL PLATES. EXACT TWO-DIMENSIONAL SOLUTIONS BY THE METHOD OF IMAGES AND APPLICATIONS TO THE HL-LHC

Q3 Materials Science
B. Levchenko
{"title":"FIELDS OF AN ULTRA-RELATIVISTIC BEAM OF CHARGED PARTICLES BETWEEN PARALLEL PLATES. EXACT TWO-DIMENSIONAL SOLUTIONS BY THE METHOD OF IMAGES AND APPLICATIONS TO THE HL-LHC","authors":"B. Levchenko","doi":"10.2528/PIERC20032903","DOIUrl":null,"url":null,"abstract":"Exact 2D analytic expressions for E and B fields and their potentials created by a linear beam of relativistic charged particles between infinite perfectly conductive plates and ferromagnetic poles are derived. The solutions are obtained by summing an infinite sequence of fields from linear charge-images and current-images in complex space. Knowledge of the normal component of the E field on the conductor surface makes it possible to calculate the induced electric charge surface density. In addition, we derive within an improved linear approximation new analytical expressions for fields near the beam in the case of an arbitrary beam offset from the median plane. The mathematical features of exact solutions and limitations for the applicability of linear approximations are specified.The primary goals of the future high-luminosity p-p and heavy-ion LHC programme are the search for yet unobserved effects of physics beyond the SM, searches for rare or low-sensitivity processes in the Higgs sector, and probing in more detail the mechanism of EW symmetry breaking. This programme relies on the stable operation of the accelerator. However, as the beam luminosity increases, a number of destabilizing phenomena occur, in particular field emission, enhancing the electron cloud effect. For the case of a proton beam, we apply the exact 2D solution for estimating the intensity of electron field emission activated by the electric field of the beam in collimators of the future high-luminosity LHC. Calculation shows that the field emission intensity is very sensitive to a collimator surface roughness. In addition, with a relatively small and accidental beam displacement from the median path, about 20% of the collimator half-gap, the emission intensity increases by a factor of 1.E+7. This will partially neutralize the beam space charge, violating acceleration dynamics and enhancing instability effects.","PeriodicalId":20699,"journal":{"name":"Progress in Electromagnetics Research C","volume":"103 1","pages":"83-95"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2528/PIERC20032903","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/PIERC20032903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Exact 2D analytic expressions for E and B fields and their potentials created by a linear beam of relativistic charged particles between infinite perfectly conductive plates and ferromagnetic poles are derived. The solutions are obtained by summing an infinite sequence of fields from linear charge-images and current-images in complex space. Knowledge of the normal component of the E field on the conductor surface makes it possible to calculate the induced electric charge surface density. In addition, we derive within an improved linear approximation new analytical expressions for fields near the beam in the case of an arbitrary beam offset from the median plane. The mathematical features of exact solutions and limitations for the applicability of linear approximations are specified.The primary goals of the future high-luminosity p-p and heavy-ion LHC programme are the search for yet unobserved effects of physics beyond the SM, searches for rare or low-sensitivity processes in the Higgs sector, and probing in more detail the mechanism of EW symmetry breaking. This programme relies on the stable operation of the accelerator. However, as the beam luminosity increases, a number of destabilizing phenomena occur, in particular field emission, enhancing the electron cloud effect. For the case of a proton beam, we apply the exact 2D solution for estimating the intensity of electron field emission activated by the electric field of the beam in collimators of the future high-luminosity LHC. Calculation shows that the field emission intensity is very sensitive to a collimator surface roughness. In addition, with a relatively small and accidental beam displacement from the median path, about 20% of the collimator half-gap, the emission intensity increases by a factor of 1.E+7. This will partially neutralize the beam space charge, violating acceleration dynamics and enhancing instability effects.
平行板之间带电粒子的超相对论光束的场。图像法的精确二维解及其在HL-LHC中的应用
导出了无限长完全导电板和铁磁极之间的相对论带电粒子线性束产生的E场和B场及其势的精确二维解析表达式。解是通过将复数空间中的线性电荷图像和电流图像中的无限序列的场求和而获得的。了解导体表面上E场的法向分量使得计算感应电荷表面密度成为可能。此外,我们在改进的线性近似中推导了在任意光束偏离中间平面的情况下光束附近场的新解析表达式。具体说明了精确解的数学特征以及线性近似适用性的限制。未来高光度p-p和重离子LHC计划的主要目标是寻找SM之外尚未观察到的物理效应,寻找希格斯扇区中罕见或低灵敏度的过程,并更详细地探索EW对称性破坏的机制。该程序依赖于加速器的稳定运行。然而,随着光束光度的增加,出现了许多不稳定现象,特别是场发射,增强了电子云效应。对于质子束的情况,我们应用精确的2D解来估计未来高亮度LHC准直器中由束的电场激活的电子场发射的强度。计算表明,场发射强度对准直器表面粗糙度非常敏感。此外,在相对较小且偶然的光束偏离中间路径(约为准直器半间隙的20%)的情况下,发射强度增加了1.E+7倍。这将部分抵消束空间电荷,违反加速动力学并增强不稳定性效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Electromagnetics Research C
Progress in Electromagnetics Research C Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
2.70
自引率
0.00%
发文量
113
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信