{"title":"Improving Data Quality Using Amazon Mechanical Turk Through Platform Setup","authors":"Lu Lu, Nathan Neale, Nathaniel D. Line, Mark Bonn","doi":"10.1177/19389655211025475","DOIUrl":null,"url":null,"abstract":"As the use of Amazon’s Mechanical Turk (MTurk) has increased among social science researchers, so, too, has research into the merits and drawbacks of the platform. However, while many endeavors have sought to address issues such as generalizability, the attentiveness of workers, and the quality of the associated data, there has been relatively less effort concentrated on integrating the various strategies that can be used to generate high-quality data using MTurk samples. Accordingly, the purpose of this research is twofold. First, existing studies are integrated into a set of strategies/best practices that can be used to maximize MTurk data quality. Second, focusing on task setup, selected platform-level strategies that have received relatively less attention in previous research are empirically tested to further enhance the contribution of the proposed best practices for MTurk usage.","PeriodicalId":47888,"journal":{"name":"Cornell Hospitality Quarterly","volume":"63 1","pages":"231 - 246"},"PeriodicalIF":3.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/19389655211025475","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cornell Hospitality Quarterly","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/19389655211025475","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 33
Abstract
As the use of Amazon’s Mechanical Turk (MTurk) has increased among social science researchers, so, too, has research into the merits and drawbacks of the platform. However, while many endeavors have sought to address issues such as generalizability, the attentiveness of workers, and the quality of the associated data, there has been relatively less effort concentrated on integrating the various strategies that can be used to generate high-quality data using MTurk samples. Accordingly, the purpose of this research is twofold. First, existing studies are integrated into a set of strategies/best practices that can be used to maximize MTurk data quality. Second, focusing on task setup, selected platform-level strategies that have received relatively less attention in previous research are empirically tested to further enhance the contribution of the proposed best practices for MTurk usage.
期刊介绍:
Cornell Hospitality Quarterly (CQ) publishes research in all business disciplines that contribute to management practice in the hospitality and tourism industries. Like the hospitality industry itself, the editorial content of CQ is broad, including topics in strategic management, consumer behavior, marketing, financial management, real-estate, accounting, operations management, planning and design, human resources management, applied economics, information technology, international development, communications, travel and tourism, and more general management. The audience is academics, hospitality managers, developers, consultants, investors, and students.