{"title":"The coupling of solids and shells by conjugate approximations","authors":"M. Malinen, P. Råback","doi":"10.23998/rm.120470","DOIUrl":null,"url":null,"abstract":"In order to get detailed information about deformations of structures efficiently, it may be necessary to use finite element models which combine three-dimensional discretizations of solidswith approximations of two-dimensional models for shells. Here we show how the idea of conjugate approximations can be used as a means to obtain a formulation of mixed-dimensional coupling between shells and solids. Our method is consistent with respect to the principle of virtual workand does not depend on additional computational parameters, an augmentation of a potential-energy functional by introducing new unknowns, or computations over auxiliary meshes.","PeriodicalId":52331,"journal":{"name":"Rakenteiden Mekaniikka","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rakenteiden Mekaniikka","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23998/rm.120470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In order to get detailed information about deformations of structures efficiently, it may be necessary to use finite element models which combine three-dimensional discretizations of solidswith approximations of two-dimensional models for shells. Here we show how the idea of conjugate approximations can be used as a means to obtain a formulation of mixed-dimensional coupling between shells and solids. Our method is consistent with respect to the principle of virtual workand does not depend on additional computational parameters, an augmentation of a potential-energy functional by introducing new unknowns, or computations over auxiliary meshes.