A WEPP-Water Quality model for simulating nonpoint source pollutants in nonuniform agricultural hillslopes: Model development and sensitivity

IF 7.3 1区 农林科学 Q1 ENVIRONMENTAL SCIENCES
Ryan P. McGehee , Dennis C. Flanagan , Bernard A. Engel
{"title":"A WEPP-Water Quality model for simulating nonpoint source pollutants in nonuniform agricultural hillslopes: Model development and sensitivity","authors":"Ryan P. McGehee ,&nbsp;Dennis C. Flanagan ,&nbsp;Bernard A. Engel","doi":"10.1016/j.iswcr.2023.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>The Water Erosion Prediction Project (WEPP) model code was modified extensively to support the simulation of nonpoint source (NPS) pollutant sourcing and transport in nonuniform hillslopes based on NPS science from the Soil and Water Assessment Tool (SWAT). This was accomplished utilizing WEPP's overland flow element (OFE) in place of SWAT's hydrologic response unit (HRU) construct which enabled more physically plausible routing within a hillslope. In addition, several improvements to the NPS code base were implemented. These include: free-source format, modern-Fortran conventions, minor enhancements to NPS model science, and code refactoring. This manuscript documents all model development activities, presents a comparison of relevant WEPP and WEPP-WQ code bases, and performs a local sensitivity analysis of the final model code for the most important input parameters and processes. Sensitivity results indicated that the model performed as expected according to its design and provided important insights for potential subsequent validation studies.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633923000096","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

The Water Erosion Prediction Project (WEPP) model code was modified extensively to support the simulation of nonpoint source (NPS) pollutant sourcing and transport in nonuniform hillslopes based on NPS science from the Soil and Water Assessment Tool (SWAT). This was accomplished utilizing WEPP's overland flow element (OFE) in place of SWAT's hydrologic response unit (HRU) construct which enabled more physically plausible routing within a hillslope. In addition, several improvements to the NPS code base were implemented. These include: free-source format, modern-Fortran conventions, minor enhancements to NPS model science, and code refactoring. This manuscript documents all model development activities, presents a comparison of relevant WEPP and WEPP-WQ code bases, and performs a local sensitivity analysis of the final model code for the most important input parameters and processes. Sensitivity results indicated that the model performed as expected according to its design and provided important insights for potential subsequent validation studies.

模拟非均匀农业山坡非点源污染物的wepp -水质模型:模型的发展和敏感性
基于水土评估工具(SWAT)的非点源污染物科学,对水蚀预测项目(WEPP)模型代码进行了广泛修改,以支持模拟非点源污染在非均匀山坡上的来源和传输。这是利用WEPP的陆上流动单元(OFE)代替SWAT的水文响应单元(HRU)结构实现的,该结构能够在山坡内实现更合理的物理路线。此外,还对核动力源代码库进行了若干改进。其中包括:自由源代码格式、现代Fortran约定、NPS模型科学的微小增强以及代码重构。这份手稿记录了所有的模型开发活动,对相关的WEPP和WEPP-WQ代码库进行了比较,并对最重要的输入参数和过程的最终模型代码进行了局部敏感性分析。敏感性结果表明,该模型根据其设计如期运行,并为潜在的后续验证研究提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Soil and Water Conservation Research
International Soil and Water Conservation Research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
12.00
自引率
3.10%
发文量
171
审稿时长
49 days
期刊介绍: The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation. The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards. Examples of appropriate topical areas include (but are not limited to): • Conservation models, tools, and technologies • Conservation agricultural • Soil health resources, indicators, assessment, and management • Land degradation • Sustainable development • Soil erosion and its control • Soil erosion processes • Water resources assessment and management • Watershed management • Soil erosion models • Literature review on topics related soil and water conservation research
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信