{"title":"Chip Level Thermal Performance Measurements in Two-Phase Immersion Cooling","authors":"Jimil M. Shah, Thomas E. Crandall, P. Tuma","doi":"10.1115/1.4062403","DOIUrl":null,"url":null,"abstract":"\n Two-Phase Immersion cooling (2PIC) has been proposed as a means of economically increasing overall energy efficiency while accommodating increased chip powers and system-level power density. Designers unfamiliar with Two-phase immersion technology may be unaware of the chip-level thermal performance capabilities of the technology. This performance, in the case of a lidded processor, is quantified as a case-to-fluid thermal resistance, Rcf. This work made use of boiler assemblies comprised of copper plates to which two porous metallic boiling enhancement coatings (BECs) had been applied. These boiler assemblies were applied with conventional thermal grease to a thermal test vehicle (TTV) emulating the Skylake series of 8th Gen Intel® Xeon® CPUs and a thermal test slug (TTS) emulating the AMD EPYCTM processors. Both were tested in saturated 3MTM FluorinertTM FC-3284 fluid. The lowest Rcf=0.020 °C/W was achieved on the TTS at 350W. The paper also includes additional TTS data gathered with different boiler assemblies and Thermal Interface Materials as well as field data in the form of Rcf or junction-to-fluid thermal resistances, Rjf, for different live silicon chips.","PeriodicalId":15663,"journal":{"name":"Journal of Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Packaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062403","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Two-Phase Immersion cooling (2PIC) has been proposed as a means of economically increasing overall energy efficiency while accommodating increased chip powers and system-level power density. Designers unfamiliar with Two-phase immersion technology may be unaware of the chip-level thermal performance capabilities of the technology. This performance, in the case of a lidded processor, is quantified as a case-to-fluid thermal resistance, Rcf. This work made use of boiler assemblies comprised of copper plates to which two porous metallic boiling enhancement coatings (BECs) had been applied. These boiler assemblies were applied with conventional thermal grease to a thermal test vehicle (TTV) emulating the Skylake series of 8th Gen Intel® Xeon® CPUs and a thermal test slug (TTS) emulating the AMD EPYCTM processors. Both were tested in saturated 3MTM FluorinertTM FC-3284 fluid. The lowest Rcf=0.020 °C/W was achieved on the TTS at 350W. The paper also includes additional TTS data gathered with different boiler assemblies and Thermal Interface Materials as well as field data in the form of Rcf or junction-to-fluid thermal resistances, Rjf, for different live silicon chips.
期刊介绍:
The Journal of Electronic Packaging publishes papers that use experimental and theoretical (analytical and computer-aided) methods, approaches, and techniques to address and solve various mechanical, materials, and reliability problems encountered in the analysis, design, manufacturing, testing, and operation of electronic and photonics components, devices, and systems.
Scope: Microsystems packaging; Systems integration; Flexible electronics; Materials with nano structures and in general small scale systems.