{"title":"Social crowd navigation of a mobile robot based on human trajectory prediction and hybrid sensing","authors":"Hao-Yun Chen, Pei-Han Huang, Li-Chen Fu","doi":"10.1007/s10514-023-10103-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper propose a hierarchical path planning algorithm that first captures the local crowd movement around the robot using RGB camera combined with LiDAR and predicts the movement of people nearby the robot, and then generates appropriate global path for the robot using the global path planner with the crowd information. After deciding the global path, the low-level control system receives the prediction results of the crowd and high-level global path, and generates the actual speed control commands for the robot after considering the social norms. With the high accuracy of computer vision for human recognition and the high precision of LiDAR, the system is able to accurately track the surrounding human locations. Through high-level path planning, the robot can use different movement strategies in different scenarios, while the crowd prediction allows the robot to generate more efficient and socially acceptable paths. With this system, even in a highly dynamic environment caused by the crowd, the robot can still plan an appropriate path reach the destination without causing psychological discomfort to others successfully.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 4","pages":"339 - 351"},"PeriodicalIF":3.7000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-023-10103-x.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10103-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
This paper propose a hierarchical path planning algorithm that first captures the local crowd movement around the robot using RGB camera combined with LiDAR and predicts the movement of people nearby the robot, and then generates appropriate global path for the robot using the global path planner with the crowd information. After deciding the global path, the low-level control system receives the prediction results of the crowd and high-level global path, and generates the actual speed control commands for the robot after considering the social norms. With the high accuracy of computer vision for human recognition and the high precision of LiDAR, the system is able to accurately track the surrounding human locations. Through high-level path planning, the robot can use different movement strategies in different scenarios, while the crowd prediction allows the robot to generate more efficient and socially acceptable paths. With this system, even in a highly dynamic environment caused by the crowd, the robot can still plan an appropriate path reach the destination without causing psychological discomfort to others successfully.
期刊介绍:
Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development.
The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.