{"title":"Designing of Chimeric Vaccine against Canine Distemper Virus Targeting Hemaglutanin Protein","authors":"","doi":"10.33263/briac134.347","DOIUrl":null,"url":null,"abstract":"The canine distemper virus is highly contagious and affects dogs' respiratory systems. The virus belongs to the paramyxoviridae family and order Mononegavirales. This class of viruses contains a negative-strand RNA. This virus also affects raccoons, foxes, and other animals. The current study aims to design a vaccine against the virus employing reverse vaccinology. The target candidate for the vaccine design is a surface protein called Hemagglutinin. Viral hemagglutinin protein sequences were retrieved from the Uniprot database, and conserved regions were identified. Possible B-cell epitope regions were identified using the ABCpred server. These epitopes were analyzed for allergenic and antigenic properties using the Allergen FP server and VaxiJen v2.0 server. The epitopes, which were antigenic and non-allergenic, were screened for T cell epitopes using NetMHC and NetMHC2 servers. The toxicity of the selected peptides was evaluated using the Toxinpred server. The epitopes were further screened for transmembrane helices and signal peptides employing TMHMM v. 2.0 and SignalP 4.1 servers, respectively. The epitopes were then checked for the parameters using the ProtParam tool. Finally, the solubility of the epitopes was determined using the SOLPro server. Using the selected epitopes, a chimeric vaccine construct was constructed with the peptides by linking the peptides with the GPGPG linker to the cholera toxin subunit B. The chimeric vaccine was modeled using the Robetta server, and codon optimization of the construct was performed using the JCAT tool.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The canine distemper virus is highly contagious and affects dogs' respiratory systems. The virus belongs to the paramyxoviridae family and order Mononegavirales. This class of viruses contains a negative-strand RNA. This virus also affects raccoons, foxes, and other animals. The current study aims to design a vaccine against the virus employing reverse vaccinology. The target candidate for the vaccine design is a surface protein called Hemagglutinin. Viral hemagglutinin protein sequences were retrieved from the Uniprot database, and conserved regions were identified. Possible B-cell epitope regions were identified using the ABCpred server. These epitopes were analyzed for allergenic and antigenic properties using the Allergen FP server and VaxiJen v2.0 server. The epitopes, which were antigenic and non-allergenic, were screened for T cell epitopes using NetMHC and NetMHC2 servers. The toxicity of the selected peptides was evaluated using the Toxinpred server. The epitopes were further screened for transmembrane helices and signal peptides employing TMHMM v. 2.0 and SignalP 4.1 servers, respectively. The epitopes were then checked for the parameters using the ProtParam tool. Finally, the solubility of the epitopes was determined using the SOLPro server. Using the selected epitopes, a chimeric vaccine construct was constructed with the peptides by linking the peptides with the GPGPG linker to the cholera toxin subunit B. The chimeric vaccine was modeled using the Robetta server, and codon optimization of the construct was performed using the JCAT tool.
期刊介绍:
Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.