Period Integrals Associated to an Affine Delsarte Type Hypersurface

S. Tanabé
{"title":"Period Integrals Associated to an Affine Delsarte Type Hypersurface","authors":"S. Tanabé","doi":"10.17323/1609-4514-2022-22-1-133-168","DOIUrl":null,"url":null,"abstract":"We calculate the period integrals for a special class of affine hypersurfaces (deformed Delsarte hypersurfaces) in an algebraic torus by the aid of their Mellin transforms. A description of the relation between poles of Mellin transforms of period integrals and the mixed Hodge structure of the cohomology of the hypersurface is given. By interpreting the period integrals as solutions to Pochhammer hypergeometric differential equation, we calculate concretely the irreducible monodromy group of period integrals that correspond to the compactification of the affine hypersurface in a complete simplicial toric variety. As an application of the equivalence between oscillating integral for Delsarte polynomial and quantum cohomology of a weighted projective space $\\mathbb{P}_{\\bf B}$, we establish an equality between its Stokes matrix and the Gram matrix of the full exceptional collection on $\\mathbb{P}_{\\bf B}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2022-22-1-133-168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We calculate the period integrals for a special class of affine hypersurfaces (deformed Delsarte hypersurfaces) in an algebraic torus by the aid of their Mellin transforms. A description of the relation between poles of Mellin transforms of period integrals and the mixed Hodge structure of the cohomology of the hypersurface is given. By interpreting the period integrals as solutions to Pochhammer hypergeometric differential equation, we calculate concretely the irreducible monodromy group of period integrals that correspond to the compactification of the affine hypersurface in a complete simplicial toric variety. As an application of the equivalence between oscillating integral for Delsarte polynomial and quantum cohomology of a weighted projective space $\mathbb{P}_{\bf B}$, we establish an equality between its Stokes matrix and the Gram matrix of the full exceptional collection on $\mathbb{P}_{\bf B}$.
分享
查看原文
仿射Delsarte型超曲面上的周期积分
利用melin变换,计算了代数环面上一类特殊仿射超曲面(变形Delsarte超曲面)的周期积分。给出了周期积分的Mellin变换的极点与超曲面上同调的混合Hodge结构之间的关系。通过将周期积分解释为Pochhammer超几何微分方程的解,我们具体地计算了仿射超曲面在完全简单环变型中的紧化所对应的周期积分的不可约单群。作为加权投影空间$\mathbb{P}_{\bf B}$的Delsarte多项式振荡积分与量子上同调的等价性的应用,我们建立了其Stokes矩阵与$\mathbb{P}_{\bf B}$上的满例外集合的Gram矩阵之间的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信