{"title":"Period Integrals Associated to an Affine Delsarte Type Hypersurface","authors":"S. Tanabé","doi":"10.17323/1609-4514-2022-22-1-133-168","DOIUrl":null,"url":null,"abstract":"We calculate the period integrals for a special class of affine hypersurfaces (deformed Delsarte hypersurfaces) in an algebraic torus by the aid of their Mellin transforms. A description of the relation between poles of Mellin transforms of period integrals and the mixed Hodge structure of the cohomology of the hypersurface is given. By interpreting the period integrals as solutions to Pochhammer hypergeometric differential equation, we calculate concretely the irreducible monodromy group of period integrals that correspond to the compactification of the affine hypersurface in a complete simplicial toric variety. As an application of the equivalence between oscillating integral for Delsarte polynomial and quantum cohomology of a weighted projective space $\\mathbb{P}_{\\bf B}$, we establish an equality between its Stokes matrix and the Gram matrix of the full exceptional collection on $\\mathbb{P}_{\\bf B}$.","PeriodicalId":54736,"journal":{"name":"Moscow Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.17323/1609-4514-2022-22-1-133-168","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We calculate the period integrals for a special class of affine hypersurfaces (deformed Delsarte hypersurfaces) in an algebraic torus by the aid of their Mellin transforms. A description of the relation between poles of Mellin transforms of period integrals and the mixed Hodge structure of the cohomology of the hypersurface is given. By interpreting the period integrals as solutions to Pochhammer hypergeometric differential equation, we calculate concretely the irreducible monodromy group of period integrals that correspond to the compactification of the affine hypersurface in a complete simplicial toric variety. As an application of the equivalence between oscillating integral for Delsarte polynomial and quantum cohomology of a weighted projective space $\mathbb{P}_{\bf B}$, we establish an equality between its Stokes matrix and the Gram matrix of the full exceptional collection on $\mathbb{P}_{\bf B}$.
期刊介绍:
The Moscow Mathematical Journal (MMJ) is an international quarterly published (paper and electronic) by the Independent University of Moscow and the department of mathematics of the Higher School of Economics, and distributed by the American Mathematical Society. MMJ presents highest quality research and research-expository papers in mathematics from all over the world. Its purpose is to bring together different branches of our science and to achieve the broadest possible outlook on mathematics, characteristic of the Moscow mathematical school in general and of the Independent University of Moscow in particular.
An important specific trait of the journal is that it especially encourages research-expository papers, which must contain new important results and include detailed introductions, placing the achievements in the context of other studies and explaining the motivation behind the research. The aim is to make the articles — at least the formulation of the main results and their significance — understandable to a wide mathematical audience rather than to a narrow class of specialists.