Promotion of wound healing by a thermosensitive and sprayable hydrogel with nanozyme activity and anti-inflammatory properties

Q1 Engineering
Wei Zhang , Xingliang Dai , Xu Jin , Muchen Huang , Jie Shan , Xulin Chen , Haisheng Qian , Zenghong Chen , Xianwen Wang
{"title":"Promotion of wound healing by a thermosensitive and sprayable hydrogel with nanozyme activity and anti-inflammatory properties","authors":"Wei Zhang ,&nbsp;Xingliang Dai ,&nbsp;Xu Jin ,&nbsp;Muchen Huang ,&nbsp;Jie Shan ,&nbsp;Xulin Chen ,&nbsp;Haisheng Qian ,&nbsp;Zenghong Chen ,&nbsp;Xianwen Wang","doi":"10.1016/j.smaim.2022.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid healing of wounds requires strategies that relieve oxidative stress resulting from overloaded free radicals and which promote angiogenesis, collagen deposition, and re-epithelialization of the wound. Nickel ions have been reported to be correlated with angiogenesis. However, several applications of metal salts or oxides to wounds lead to increased toxicity. The nickel metal-organic framework (Ni MOF) nanorods described herein can slowly release nickel ions, resulting in reduced toxicity and improved wound healing rates. More importantly, the Ni<sub>3</sub>(2,3,6,7,10,11-hexaiminotriphenylene)<sub>2</sub> (Ni<sub>3</sub>(HITP)<sub>2</sub>) nanorods with well-defined structures, superior conductivity and many catalytic sites showed superoxide dismutase (SOD)-like enzyme activity and scavenged various free radicals. In addition, the Ni<sub>3</sub>(HITP)<sub>2</sub> nanomaterials contributed to promotion of the migration of fibroblasts, angiogenesis and macrophage polarization from M1 to M2. The aqueous solution of Pluronic F127, a temperature-sensitive, nontoxic and phase-changing hydrogel material, was shown to be an effective choice for injectable and sprayable medical dressings. The Ni<sub>3</sub>(HITP)<sub>2</sub> MOF nanomaterials can be effectively encapsulated with the F127 hydrogel to achieve continuous long-term therapeutic effects. The toxicity test results suggested that the Ni<sub>3</sub>(HITP)<sub>2</sub> MOF nanomaterials exhibited excellent biosafety and no observable toxicity or side effects in mice. Therefore, the Ni<sub>3</sub>(HITP)<sub>2</sub> MOF nanorods hold promising potential in the biomedical field, and this work provides an effective solution to wound therapy.</p></div>","PeriodicalId":22019,"journal":{"name":"Smart Materials in Medicine","volume":"4 ","pages":"Pages 134-145"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590183422000424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 14

Abstract

The rapid healing of wounds requires strategies that relieve oxidative stress resulting from overloaded free radicals and which promote angiogenesis, collagen deposition, and re-epithelialization of the wound. Nickel ions have been reported to be correlated with angiogenesis. However, several applications of metal salts or oxides to wounds lead to increased toxicity. The nickel metal-organic framework (Ni MOF) nanorods described herein can slowly release nickel ions, resulting in reduced toxicity and improved wound healing rates. More importantly, the Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 (Ni3(HITP)2) nanorods with well-defined structures, superior conductivity and many catalytic sites showed superoxide dismutase (SOD)-like enzyme activity and scavenged various free radicals. In addition, the Ni3(HITP)2 nanomaterials contributed to promotion of the migration of fibroblasts, angiogenesis and macrophage polarization from M1 to M2. The aqueous solution of Pluronic F127, a temperature-sensitive, nontoxic and phase-changing hydrogel material, was shown to be an effective choice for injectable and sprayable medical dressings. The Ni3(HITP)2 MOF nanomaterials can be effectively encapsulated with the F127 hydrogel to achieve continuous long-term therapeutic effects. The toxicity test results suggested that the Ni3(HITP)2 MOF nanomaterials exhibited excellent biosafety and no observable toxicity or side effects in mice. Therefore, the Ni3(HITP)2 MOF nanorods hold promising potential in the biomedical field, and this work provides an effective solution to wound therapy.

Abstract Image

具有纳米酶活性和抗炎特性的热敏和可喷雾水凝胶促进伤口愈合
伤口的快速愈合需要缓解自由基超载引起的氧化应激,促进血管生成、胶原沉积和伤口的再上皮化。据报道,镍离子与血管生成有关。然而,金属盐或氧化物在伤口上的几种应用会导致毒性增加。本文所述的镍金属有机框架(Ni MOF)纳米棒可以缓慢释放镍离子,从而降低毒性并提高伤口愈合率。更重要的是,Ni3(2,3,6,7,10,11-六亚胺-三苯)2 (Ni3(HITP)2)纳米棒具有明确的结构,优越的导电性和许多催化位点,具有超氧化物歧化酶(SOD)样酶活性,并清除各种自由基。此外,Ni3(HITP)2纳米材料有助于促进成纤维细胞的迁移、血管生成和巨噬细胞从M1向M2的极化。Pluronic F127的水溶液是一种对温度敏感、无毒和相变的水凝胶材料,被证明是注射和喷雾医用敷料的有效选择。Ni3(HITP)2 MOF纳米材料可以被F127水凝胶有效封装,从而达到持续的长期治疗效果。毒性试验结果表明,Ni3(HITP)2 MOF纳米材料具有良好的生物安全性,对小鼠无明显的毒副作用。因此,Ni3(HITP)2 MOF纳米棒在生物医学领域具有广阔的应用前景,为伤口治疗提供了一种有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Materials in Medicine
Smart Materials in Medicine Engineering-Biomedical Engineering
CiteScore
14.00
自引率
0.00%
发文量
41
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信