{"title":"Permutations and the divisor graph of [1, n]","authors":"Nathan McNew","doi":"10.1112/mtk.12177","DOIUrl":null,"url":null,"abstract":"<p>Let <math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>div</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$S_{\\rm div}(n)$</annotation>\n </semantics></math> denote the set of permutations π of <i>n</i> such that for each <math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>⩽</mo>\n <mi>j</mi>\n <mo>⩽</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$1\\leqslant j \\leqslant n$</annotation>\n </semantics></math> either <math>\n <semantics>\n <mrow>\n <mi>j</mi>\n <mo>∣</mo>\n <mi>π</mi>\n <mo>(</mo>\n <mi>j</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$j \\mid \\pi (j)$</annotation>\n </semantics></math> or <math>\n <semantics>\n <mrow>\n <mi>π</mi>\n <mo>(</mo>\n <mi>j</mi>\n <mo>)</mo>\n <mo>∣</mo>\n <mi>j</mi>\n </mrow>\n <annotation>$\\pi (j) \\mid j$</annotation>\n </semantics></math>. These permutations can also be viewed as vertex-disjoint directed cycle covers of the divisor graph <math>\n <semantics>\n <msub>\n <mi>D</mi>\n <mrow>\n <mo>[</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>n</mi>\n <mo>]</mo>\n </mrow>\n </msub>\n <annotation>$\\mathcal {D}_{[1,n]}$</annotation>\n </semantics></math> on vertices <math>\n <semantics>\n <mrow>\n <msub>\n <mi>v</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>v</mi>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$v_1, \\ldots , v_n$</annotation>\n </semantics></math> with an edge between <math>\n <semantics>\n <msub>\n <mi>v</mi>\n <mi>i</mi>\n </msub>\n <annotation>$v_i$</annotation>\n </semantics></math> and <math>\n <semantics>\n <msub>\n <mi>v</mi>\n <mi>j</mi>\n </msub>\n <annotation>$v_j$</annotation>\n </semantics></math> if <math>\n <semantics>\n <mrow>\n <mi>i</mi>\n <mo>∣</mo>\n <mi>j</mi>\n </mrow>\n <annotation>$i\\mid j$</annotation>\n </semantics></math> or <math>\n <semantics>\n <mrow>\n <mi>j</mi>\n <mo>∣</mo>\n <mi>i</mi>\n </mrow>\n <annotation>$j \\mid i$</annotation>\n </semantics></math>. We improve on recent results of Pomerance by showing <math>\n <semantics>\n <mrow>\n <msub>\n <mi>c</mi>\n <mi>d</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>n</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n </msub>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>#</mo>\n <msub>\n <mi>S</mi>\n <mi>div</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>/</mo>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$c_d = \\lim _{n \\rightarrow \\infty }(\\# S_{\\rm div}(n))^{1/n}$</annotation>\n </semantics></math> exists and that <math>\n <semantics>\n <mrow>\n <mn>2.069</mn>\n <mo><</mo>\n <msub>\n <mi>c</mi>\n <mi>d</mi>\n </msub>\n <mo><</mo>\n <mn>2.694</mn>\n </mrow>\n <annotation>$2.069<c_d<2.694$</annotation>\n </semantics></math>. We also obtain similar results for the set <math>\n <semantics>\n <mrow>\n <msub>\n <mi>S</mi>\n <mi>lcm</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$S_{\\rm lcm}(n)$</annotation>\n </semantics></math> of permutations where <math>\n <semantics>\n <mrow>\n <mo>lcm</mo>\n <mo>(</mo>\n <mi>j</mi>\n <mo>,</mo>\n <mi>π</mi>\n <mo>(</mo>\n <mi>j</mi>\n <mo>)</mo>\n <mo>)</mo>\n <mo>⩽</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$\\operatorname{lcm}(j,\\pi (j))\\leqslant n$</annotation>\n </semantics></math> for all <i>j</i>. The results rely on a graph theoretic result bounding the number of vertex-disjoint directed cycle covers, which may be of independent interest.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12177","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote the set of permutations π of n such that for each either or . These permutations can also be viewed as vertex-disjoint directed cycle covers of the divisor graph on vertices with an edge between and if or . We improve on recent results of Pomerance by showing exists and that . We also obtain similar results for the set of permutations where for all j. The results rely on a graph theoretic result bounding the number of vertex-disjoint directed cycle covers, which may be of independent interest.
期刊介绍:
Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.