Yuanpei Gao, Kira A. Borden, Shannon Brown, C. Wagner-Riddle
{"title":"Non-growing season soil nitrous oxide emissions as influenced by cover crops and fall tillage termination","authors":"Yuanpei Gao, Kira A. Borden, Shannon Brown, C. Wagner-Riddle","doi":"10.1139/cjss-2023-0017","DOIUrl":null,"url":null,"abstract":"Cropland soil is a major driver of global nitrous oxide (N2O) emissions. In cold climates, non-growing season (NGS) emissions can be significant due to high fluxes during freeze-thaw (FT) cycles. Cover crops can alter key soil conditions that govern N2O-producing microbial processes, with multiple potential pathways to either increase or decrease N2O production during FT cycles. Cultivating cover crops in the fall to terminate may further disrupt these processes and the overall impact of cover crops on N2O emissions. Yet, few studies have touched on how termination practices of cover crops impact FT emissions over the NGS. Using the flux gradient method to continuously measure N2O emissions from a conventional corn-soybean rotation, we investigated the effects of summer-established cover crops (perennial ryegrass and crimson clover) (with cover crops: +CC; without cover crops: -CC) when terminated by fall cultivation (with fall cultivation: +FC; without fall cultivation: -FC) over a six-month NGS that was characterized by several freezing and thawing periods. Crimson clover cover crop was completely winter killed, while the ryegrass survived on the +CC-FC field. Total NGS (Nov-April) emissions varied nearly 2.5-fold among treatments from 395.1 (-CC-FC) to 978.1 (+CC+FC) g N2O-N ha-1. Compared to the control treatment (-CC-FC), fall cultivation alone (-CC+FC) and cover crops alone (+CC-FC) increased total NGS N2O emissions and fall cultivation with cover crops (+CC+FC) increased N2O fluxes even more. Careful CC species selection and management are important to avoid elevated NGS emissions.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2023-0017","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cropland soil is a major driver of global nitrous oxide (N2O) emissions. In cold climates, non-growing season (NGS) emissions can be significant due to high fluxes during freeze-thaw (FT) cycles. Cover crops can alter key soil conditions that govern N2O-producing microbial processes, with multiple potential pathways to either increase or decrease N2O production during FT cycles. Cultivating cover crops in the fall to terminate may further disrupt these processes and the overall impact of cover crops on N2O emissions. Yet, few studies have touched on how termination practices of cover crops impact FT emissions over the NGS. Using the flux gradient method to continuously measure N2O emissions from a conventional corn-soybean rotation, we investigated the effects of summer-established cover crops (perennial ryegrass and crimson clover) (with cover crops: +CC; without cover crops: -CC) when terminated by fall cultivation (with fall cultivation: +FC; without fall cultivation: -FC) over a six-month NGS that was characterized by several freezing and thawing periods. Crimson clover cover crop was completely winter killed, while the ryegrass survived on the +CC-FC field. Total NGS (Nov-April) emissions varied nearly 2.5-fold among treatments from 395.1 (-CC-FC) to 978.1 (+CC+FC) g N2O-N ha-1. Compared to the control treatment (-CC-FC), fall cultivation alone (-CC+FC) and cover crops alone (+CC-FC) increased total NGS N2O emissions and fall cultivation with cover crops (+CC+FC) increased N2O fluxes even more. Careful CC species selection and management are important to avoid elevated NGS emissions.
期刊介绍:
The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.