Jiacheng Yu , Changqian Cao , Shuo Liu , Yongxin Pan
{"title":"Eco-friendly magneto-photothermal sponge for the fast recovery of highly viscous crude oil spill","authors":"Jiacheng Yu , Changqian Cao , Shuo Liu , Yongxin Pan","doi":"10.1016/j.seppur.2022.121668","DOIUrl":null,"url":null,"abstract":"<div><p>The green remediation of crude oil spills is a global concern due to the high viscosity and low fluidity of such oil. Sorbents with heating functions are promising candidates for reducing the viscosity of crude oil and accelerating its cleanup. Herein, we introduce an eco-friendly sponge with the dual functionality of magnetic and photothermal heating for the rapid recovery of heavy oil spills with very high viscosity. The magneto-photothermal sponge was fabricated by the facile dip-coating of magnetoferritin (MPfFn) nanoparticles, polydopamine (PDA), and polydimethylsiloxane (PDMS) on a melamine sponge (MS). The resulting PDMS-MPfFn-MS exhibited excellent hydrophobicity and adequate flame-retardancy. Owing to the electromagnetic–thermal and photothermal conversion properties of the MPfFn/PDA coating, the surface of the functionalized sponge could be rapidly heated to 112.5 °C under alternating magnetic field (<em>f</em> = 502.05 kHz, <em>H</em> = 10.5 kA m<sup>−1</sup>) or 81.9 °C under light illumination (1 kW m<sup>−2</sup>). The fast and continuous recovery of extremely highly viscous oil was realized by a combination of solar and magnetic heating with a vacuum pump, and the recovery rate reached 50.6 g h<sup>−1</sup> cm<sup>−2</sup>. The proposed approach integrates the safety and temperature controllability of magnetic heating and the energy-saving feature of solar heating, thereby serving as a new solution for addressing viscous crude oil spills.</p></div>","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"298 ","pages":"Article 121668"},"PeriodicalIF":8.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383586622012242","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 13
Abstract
The green remediation of crude oil spills is a global concern due to the high viscosity and low fluidity of such oil. Sorbents with heating functions are promising candidates for reducing the viscosity of crude oil and accelerating its cleanup. Herein, we introduce an eco-friendly sponge with the dual functionality of magnetic and photothermal heating for the rapid recovery of heavy oil spills with very high viscosity. The magneto-photothermal sponge was fabricated by the facile dip-coating of magnetoferritin (MPfFn) nanoparticles, polydopamine (PDA), and polydimethylsiloxane (PDMS) on a melamine sponge (MS). The resulting PDMS-MPfFn-MS exhibited excellent hydrophobicity and adequate flame-retardancy. Owing to the electromagnetic–thermal and photothermal conversion properties of the MPfFn/PDA coating, the surface of the functionalized sponge could be rapidly heated to 112.5 °C under alternating magnetic field (f = 502.05 kHz, H = 10.5 kA m−1) or 81.9 °C under light illumination (1 kW m−2). The fast and continuous recovery of extremely highly viscous oil was realized by a combination of solar and magnetic heating with a vacuum pump, and the recovery rate reached 50.6 g h−1 cm−2. The proposed approach integrates the safety and temperature controllability of magnetic heating and the energy-saving feature of solar heating, thereby serving as a new solution for addressing viscous crude oil spills.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.