{"title":"Prospects for growing and use of energy crops in Ukraine","authors":"O. Tryboi, T. Zheliezna, A. Bashtovyi","doi":"10.31473/2305-5987-2021-1-28(42)-24","DOIUrl":null,"url":null,"abstract":"The purpose of the study is to analyze the current state, existing obstacles and prospects for growing and using energy crops in Ukraine. Different aspects such as the availability of unused land for cultivation, technical and economic indicators of relevant projects, as well as the results of life cycle assessment of heat production from energy crops are taken into account. Research methods include analysis and processing of official statistics on the area of land of different categories in Ukraine; performance of life cycle assessment for growing energy crops for heat production in terms of energy efficiency and reduction of greenhouse gas emissions; carrying out of feasibility study of respective projects. Results of the study show that there are up to 4 million hectares of unused agricultural land in Ukraine annually, which can be used for growing energy crops without creating competition for food production and without violating the criteria of sustainable development. The life cycle of projects for growing perennial energy crops for heat production has high energy efficiency, and the value of greenhouse gas emissions reduction depends significantly on the distance of transportation of biofuels. However, projects for the cultivation of such energy crops as willow, poplar, and miscanthus have economic indicators on the verge of profitability, and therefore may not be attractive enough for investors. Conclusions. Growing and using energy crops is one of the most promising sectors of bioenergy in Ukraine. The advantages of this area are the ability to obtain all types of biofuels (solid, gaseous, liquid biofuels) to replace traditional energy sources, a positive impact on soil (increase in organic matter, phytoremediation of contaminated lands) as well as local economic development and job creation in the regions. To improve the economic performance of the relevant projects, it is necessary to introduce a state subsidy for the cultivation of energy crops at the level of 20-24 thousand UAH per ha, depending on the type of crop.","PeriodicalId":34711,"journal":{"name":"Tekhnikotekhnologichni aspekti rozvitku ta viprobuvannia novoyi tekhniki i tekhnologii dlia sil''s''kogo gospodarstva Ukrayini","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tekhnikotekhnologichni aspekti rozvitku ta viprobuvannia novoyi tekhniki i tekhnologii dlia sil''s''kogo gospodarstva Ukrayini","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31473/2305-5987-2021-1-28(42)-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The purpose of the study is to analyze the current state, existing obstacles and prospects for growing and using energy crops in Ukraine. Different aspects such as the availability of unused land for cultivation, technical and economic indicators of relevant projects, as well as the results of life cycle assessment of heat production from energy crops are taken into account. Research methods include analysis and processing of official statistics on the area of land of different categories in Ukraine; performance of life cycle assessment for growing energy crops for heat production in terms of energy efficiency and reduction of greenhouse gas emissions; carrying out of feasibility study of respective projects. Results of the study show that there are up to 4 million hectares of unused agricultural land in Ukraine annually, which can be used for growing energy crops without creating competition for food production and without violating the criteria of sustainable development. The life cycle of projects for growing perennial energy crops for heat production has high energy efficiency, and the value of greenhouse gas emissions reduction depends significantly on the distance of transportation of biofuels. However, projects for the cultivation of such energy crops as willow, poplar, and miscanthus have economic indicators on the verge of profitability, and therefore may not be attractive enough for investors. Conclusions. Growing and using energy crops is one of the most promising sectors of bioenergy in Ukraine. The advantages of this area are the ability to obtain all types of biofuels (solid, gaseous, liquid biofuels) to replace traditional energy sources, a positive impact on soil (increase in organic matter, phytoremediation of contaminated lands) as well as local economic development and job creation in the regions. To improve the economic performance of the relevant projects, it is necessary to introduce a state subsidy for the cultivation of energy crops at the level of 20-24 thousand UAH per ha, depending on the type of crop.