Coordination between phospholipid pools and DNA damage sensing

IF 2.4 4区 生物学 Q4 CELL BIOLOGY
Sara Ovejero, Caroline Soulet, Sylvain Kumanski, María Moriel-Carretero
{"title":"Coordination between phospholipid pools and DNA damage sensing","authors":"Sara Ovejero,&nbsp;Caroline Soulet,&nbsp;Sylvain Kumanski,&nbsp;María Moriel-Carretero","doi":"10.1111/boc.202200007","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Both phospholipid synthesis and the detection of DNA damage are coupled to cell cycle progression, yet whether these two aspects crosstalk to each other remains unassessed. We postulate here that shortage of phospholipids, which negatively affects proliferation, may reduce the need for checkpoint activation in response to DNA damage.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>To test this hypothesis, we explore here the DNA Damage Response activation in response to seven different genotoxins, in three distinct cell types, and manipulate phospholipid synthesis both pharmacologically and genetically. This allows us to point at the DNA damage response kinase ATR as responsible for the coordination between phospholipid levels and DNA damage sensing.</p>\n </section>\n \n <section>\n \n <h3> Conclusions and Significance</h3>\n \n <p>ATR could combine its ability to sense DNA damage and phospholipid profiles in order to finetune the response to DNA lesions depending on metabolic cues. Further, our analysis reveals the functional significance of this crosstalk to keep genome homeostasis.</p>\n </section>\n </div>","PeriodicalId":8859,"journal":{"name":"Biology of the Cell","volume":"114 8","pages":"211-219"},"PeriodicalIF":2.4000,"publicationDate":"2022-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/boc.202200007","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/boc.202200007","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Background

Both phospholipid synthesis and the detection of DNA damage are coupled to cell cycle progression, yet whether these two aspects crosstalk to each other remains unassessed. We postulate here that shortage of phospholipids, which negatively affects proliferation, may reduce the need for checkpoint activation in response to DNA damage.

Results

To test this hypothesis, we explore here the DNA Damage Response activation in response to seven different genotoxins, in three distinct cell types, and manipulate phospholipid synthesis both pharmacologically and genetically. This allows us to point at the DNA damage response kinase ATR as responsible for the coordination between phospholipid levels and DNA damage sensing.

Conclusions and Significance

ATR could combine its ability to sense DNA damage and phospholipid profiles in order to finetune the response to DNA lesions depending on metabolic cues. Further, our analysis reveals the functional significance of this crosstalk to keep genome homeostasis.

Abstract Image

磷脂库与DNA损伤传感的协同作用
磷脂合成和DNA损伤检测都与细胞周期进展相关,但这两个方面是否相互串扰仍未得到评估。我们在这里假设,磷脂的缺乏会对增殖产生负面影响,可能会减少对DNA损伤时检查点激活的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology of the Cell
Biology of the Cell 生物-细胞生物学
CiteScore
5.30
自引率
0.00%
发文量
53
审稿时长
>12 weeks
期刊介绍: The journal publishes original research articles and reviews on all aspects of cellular, molecular and structural biology, developmental biology, cell physiology and evolution. It will publish articles or reviews contributing to the understanding of the elementary biochemical and biophysical principles of live matter organization from the molecular, cellular and tissues scales and organisms. This includes contributions directed towards understanding biochemical and biophysical mechanisms, structure-function relationships with respect to basic cell and tissue functions, development, development/evolution relationship, morphogenesis, stem cell biology, cell biology of disease, plant cell biology, as well as contributions directed toward understanding integrated processes at the organelles, cell and tissue levels. Contributions using approaches such as high resolution imaging, live imaging, quantitative cell biology and integrated biology; as well as those using innovative genetic and epigenetic technologies, ex-vivo tissue engineering, cellular, tissue and integrated functional analysis, and quantitative biology and modeling to demonstrate original biological principles are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信