R. Escamilla, N. Zheng, T. MacLeod, R. Imamura, Shangcheng Wang, K. Wilk, Kyle Yamashiro, G. Fleisig
{"title":"Patellofemoral Joint Loading in Forward Lunge With Step Length and Height Variations.","authors":"R. Escamilla, N. Zheng, T. MacLeod, R. Imamura, Shangcheng Wang, K. Wilk, Kyle Yamashiro, G. Fleisig","doi":"10.1123/jab.2021-0313","DOIUrl":null,"url":null,"abstract":"The objective was to assess how patellofemoral loads (joint force and stress) change while lunging with step length and step height variations. Sixteen participants performed a forward lunge using short and long steps at ground level and up to a 10-cm platform. Electromyography, ground reaction force, and 3D motion were captured, and patellofemoral loads were calculated as a function of knee angle. Repeated-measures 2-way analysis of variance (P < .05) was employed. Patellofemoral loads in the lead knee were greater with long step at the beginning of landing (10°-30° knee angle) and the end of pushoff (10°-40°) and greater with short step during the deep knee flexion portion of the lunge (50°-100°). Patellofemoral loads were greater at ground level than 10-cm platform during lunge descent (50°-100°) and lunge ascent (40°-70°). Patellofemoral loads generally increased as knee flexion increased and decreased as knee flexion decreased. To gradually increase patellofemoral loads, perform forward lunge in the following sequence: (1) minimal knee flexion (0°-30°), (2) moderate knee flexion (0°-60°), (3) long step and deep knee flexion (0°-100°) up to a 10-cm platform, and (4) long step and deep knee flexion (0°-100°) at ground level.","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"1 1","pages":"1-11"},"PeriodicalIF":1.1000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2021-0313","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
The objective was to assess how patellofemoral loads (joint force and stress) change while lunging with step length and step height variations. Sixteen participants performed a forward lunge using short and long steps at ground level and up to a 10-cm platform. Electromyography, ground reaction force, and 3D motion were captured, and patellofemoral loads were calculated as a function of knee angle. Repeated-measures 2-way analysis of variance (P < .05) was employed. Patellofemoral loads in the lead knee were greater with long step at the beginning of landing (10°-30° knee angle) and the end of pushoff (10°-40°) and greater with short step during the deep knee flexion portion of the lunge (50°-100°). Patellofemoral loads were greater at ground level than 10-cm platform during lunge descent (50°-100°) and lunge ascent (40°-70°). Patellofemoral loads generally increased as knee flexion increased and decreased as knee flexion decreased. To gradually increase patellofemoral loads, perform forward lunge in the following sequence: (1) minimal knee flexion (0°-30°), (2) moderate knee flexion (0°-60°), (3) long step and deep knee flexion (0°-100°) up to a 10-cm platform, and (4) long step and deep knee flexion (0°-100°) at ground level.
期刊介绍:
The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.