Yueyang Hu , Xuehong Ren , Jiayuan Ye , Zhengbin Luan , Wensheng Zhang
{"title":"The reactive products and reactivity of modified red mud and ground granulated blast furnace slag at different alkalinities","authors":"Yueyang Hu , Xuehong Ren , Jiayuan Ye , Zhengbin Luan , Wensheng Zhang","doi":"10.1016/j.conbuildmat.2022.128471","DOIUrl":null,"url":null,"abstract":"<div><p>Supplementary cementing materials are widely used for cement and concrete. In this study, red mud was modified as a supplementary cementing material. The composition and activity of modified red mud are reported. The reaction products were analysed by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The obtained results show that red mud can be modified to glass with activity, and the composition of MRM determines the formation of glass and activity. The dissolution rate of MRM versus time increases with pH in NaOH solutions. The reaction products of MRM pastes in pH = 14 were C<sub>2</sub>ASH<sub>8</sub> and C-S-H. Compared to ground granulated blast furnace slag, the activity of MRM is lower. This is probably attributed to the specific surface area, the content of Ca and the absence of sulfate in glass. The results can be useful for industrial application of MRM.</p></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"346 ","pages":"Article 128471"},"PeriodicalIF":7.4000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061822021316","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Supplementary cementing materials are widely used for cement and concrete. In this study, red mud was modified as a supplementary cementing material. The composition and activity of modified red mud are reported. The reaction products were analysed by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The obtained results show that red mud can be modified to glass with activity, and the composition of MRM determines the formation of glass and activity. The dissolution rate of MRM versus time increases with pH in NaOH solutions. The reaction products of MRM pastes in pH = 14 were C2ASH8 and C-S-H. Compared to ground granulated blast furnace slag, the activity of MRM is lower. This is probably attributed to the specific surface area, the content of Ca and the absence of sulfate in glass. The results can be useful for industrial application of MRM.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.