Geodesic orbit Finsler spaces with K ≥ 0 and the (FP) condition

IF 0.5 4区 数学 Q3 MATHEMATICS
Ming Xu
{"title":"Geodesic orbit Finsler spaces with K ≥ 0 and the (FP) condition","authors":"Ming Xu","doi":"10.1515/advgeom-2021-0023","DOIUrl":null,"url":null,"abstract":"Abstract We study the interaction between the g.o. property and certain flag curvature conditions. A Finsler manifold is called g.o. if each constant speed geodesic is the orbit of a one-parameter subgroup. Besides the non-negatively curved condition, we also consider the condition (FP) for the flag curvature, i.e. in any flag we find a flag pole such that the flag curvature is positive. By our main theorem, if a g.o. Finsler space (M, F) has non-negative flag curvature and satisfies (FP), then M is compact. If M = G/H where G has a compact Lie algebra, then the rank inequality rk 𝔤 ≤ rk 𝔥+1 holds. As an application,we prove that any even-dimensional g.o. Finsler space which has non-negative flag curvature and satisfies (FP) is a smooth coset space admitting a positively curved homogeneous Riemannian or Finsler metric.","PeriodicalId":7335,"journal":{"name":"Advances in Geometry","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/advgeom-2021-0023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract We study the interaction between the g.o. property and certain flag curvature conditions. A Finsler manifold is called g.o. if each constant speed geodesic is the orbit of a one-parameter subgroup. Besides the non-negatively curved condition, we also consider the condition (FP) for the flag curvature, i.e. in any flag we find a flag pole such that the flag curvature is positive. By our main theorem, if a g.o. Finsler space (M, F) has non-negative flag curvature and satisfies (FP), then M is compact. If M = G/H where G has a compact Lie algebra, then the rank inequality rk 𝔤 ≤ rk 𝔥+1 holds. As an application,we prove that any even-dimensional g.o. Finsler space which has non-negative flag curvature and satisfies (FP) is a smooth coset space admitting a positively curved homogeneous Riemannian or Finsler metric.
具有K≥0和(FP)条件的测地线轨道Finsler空间
摘要研究了g.o.性质与某些flag曲率条件之间的相互作用。如果每个等速测地线都是一个单参数子群的轨道,则称芬斯勒流形为g.o.。除了非负弯曲的条件外,我们还考虑了旗杆曲率的条件(FP),即在任何旗杆上我们都可以找到旗杆曲率为正的旗杆。根据我们的主要定理,如果一个g.o Finsler空间(M, F)具有非负的标志曲率并且满足(FP),则M是紧的。如果M = G/H,其中G有紧李代数,则秩不等式rk≤rk +1成立。作为应用,我们证明了任何具有非负标志曲率且满足(FP)的偶数维g.o Finsler空间是一个光滑的协集空间,它允许一个正弯曲的齐次黎曼度规或Finsler度规。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Geometry
Advances in Geometry 数学-数学
CiteScore
1.00
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Advances in Geometry is a mathematical journal for the publication of original research articles of excellent quality in the area of geometry. Geometry is a field of long standing-tradition and eminent importance. The study of space and spatial patterns is a major mathematical activity; geometric ideas and geometric language permeate all of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信